Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ineleq Structured version   Visualization version   GIF version

Theorem ineleq 34119
Description: Lemma for inecmo 34120. (Contributed by Peter Mazsa, 29-May-2018.)
Assertion
Ref Expression
ineleq (∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦 ∨ (𝐶𝐷) = ∅) ↔ ∀𝑥𝐴𝑧𝑦𝐵 ((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐶   𝑧,𝐷   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem ineleq
StepHypRef Expression
1 orcom 402 . . . . 5 ((𝑥 = 𝑦 ∨ (𝐶𝐷) = ∅) ↔ ((𝐶𝐷) = ∅ ∨ 𝑥 = 𝑦))
2 df-or 385 . . . . 5 (((𝐶𝐷) = ∅ ∨ 𝑥 = 𝑦) ↔ (¬ (𝐶𝐷) = ∅ → 𝑥 = 𝑦))
3 neq0 3930 . . . . . . . 8 (¬ (𝐶𝐷) = ∅ ↔ ∃𝑧 𝑧 ∈ (𝐶𝐷))
4 elin 3796 . . . . . . . . 9 (𝑧 ∈ (𝐶𝐷) ↔ (𝑧𝐶𝑧𝐷))
54exbii 1774 . . . . . . . 8 (∃𝑧 𝑧 ∈ (𝐶𝐷) ↔ ∃𝑧(𝑧𝐶𝑧𝐷))
63, 5bitri 264 . . . . . . 7 (¬ (𝐶𝐷) = ∅ ↔ ∃𝑧(𝑧𝐶𝑧𝐷))
76imbi1i 339 . . . . . 6 ((¬ (𝐶𝐷) = ∅ → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
8 19.23v 1902 . . . . . 6 (∀𝑧((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
97, 8bitr4i 267 . . . . 5 ((¬ (𝐶𝐷) = ∅ → 𝑥 = 𝑦) ↔ ∀𝑧((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
101, 2, 93bitri 286 . . . 4 ((𝑥 = 𝑦 ∨ (𝐶𝐷) = ∅) ↔ ∀𝑧((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
1110ralbii 2980 . . 3 (∀𝑦𝐵 (𝑥 = 𝑦 ∨ (𝐶𝐷) = ∅) ↔ ∀𝑦𝐵𝑧((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
12 ralcom4 3224 . . 3 (∀𝑦𝐵𝑧((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦) ↔ ∀𝑧𝑦𝐵 ((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
1311, 12bitri 264 . 2 (∀𝑦𝐵 (𝑥 = 𝑦 ∨ (𝐶𝐷) = ∅) ↔ ∀𝑧𝑦𝐵 ((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
1413ralbii 2980 1 (∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦 ∨ (𝐶𝐷) = ∅) ↔ ∀𝑥𝐴𝑧𝑦𝐵 ((𝑧𝐶𝑧𝐷) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wral 2912  cin 3573  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916
This theorem is referenced by:  inecmo  34120
  Copyright terms: Public domain W3C validator