Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ineleq Structured version   Visualization version   Unicode version

Theorem ineleq 34119
Description: Lemma for inecmo 34120. (Contributed by Peter Mazsa, 29-May-2018.)
Assertion
Ref Expression
ineleq  |-  ( A. x  e.  A  A. y  e.  B  (
x  =  y  \/  ( C  i^i  D
)  =  (/) )  <->  A. x  e.  A  A. z A. y  e.  B  ( ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
Distinct variable groups:    z, B    z, C    z, D    x, z    y, z
Allowed substitution hints:    A( x, y, z)    B( x, y)    C( x, y)    D( x, y)

Proof of Theorem ineleq
StepHypRef Expression
1 orcom 402 . . . . 5  |-  ( ( x  =  y  \/  ( C  i^i  D
)  =  (/) )  <->  ( ( C  i^i  D )  =  (/)  \/  x  =  y ) )
2 df-or 385 . . . . 5  |-  ( ( ( C  i^i  D
)  =  (/)  \/  x  =  y )  <->  ( -.  ( C  i^i  D )  =  (/)  ->  x  =  y ) )
3 neq0 3930 . . . . . . . 8  |-  ( -.  ( C  i^i  D
)  =  (/)  <->  E. z 
z  e.  ( C  i^i  D ) )
4 elin 3796 . . . . . . . . 9  |-  ( z  e.  ( C  i^i  D )  <->  ( z  e.  C  /\  z  e.  D ) )
54exbii 1774 . . . . . . . 8  |-  ( E. z  z  e.  ( C  i^i  D )  <->  E. z ( z  e.  C  /\  z  e.  D ) )
63, 5bitri 264 . . . . . . 7  |-  ( -.  ( C  i^i  D
)  =  (/)  <->  E. z
( z  e.  C  /\  z  e.  D
) )
76imbi1i 339 . . . . . 6  |-  ( ( -.  ( C  i^i  D )  =  (/)  ->  x  =  y )  <->  ( E. z ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
8 19.23v 1902 . . . . . 6  |-  ( A. z ( ( z  e.  C  /\  z  e.  D )  ->  x  =  y )  <->  ( E. z ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
97, 8bitr4i 267 . . . . 5  |-  ( ( -.  ( C  i^i  D )  =  (/)  ->  x  =  y )  <->  A. z
( ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
101, 2, 93bitri 286 . . . 4  |-  ( ( x  =  y  \/  ( C  i^i  D
)  =  (/) )  <->  A. z
( ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
1110ralbii 2980 . . 3  |-  ( A. y  e.  B  (
x  =  y  \/  ( C  i^i  D
)  =  (/) )  <->  A. y  e.  B  A. z
( ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
12 ralcom4 3224 . . 3  |-  ( A. y  e.  B  A. z ( ( z  e.  C  /\  z  e.  D )  ->  x  =  y )  <->  A. z A. y  e.  B  ( ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
1311, 12bitri 264 . 2  |-  ( A. y  e.  B  (
x  =  y  \/  ( C  i^i  D
)  =  (/) )  <->  A. z A. y  e.  B  ( ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
1413ralbii 2980 1  |-  ( A. x  e.  A  A. y  e.  B  (
x  =  y  \/  ( C  i^i  D
)  =  (/) )  <->  A. x  e.  A  A. z A. y  e.  B  ( ( z  e.  C  /\  z  e.  D )  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912    i^i cin 3573   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916
This theorem is referenced by:  inecmo  34120
  Copyright terms: Public domain W3C validator