MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23v Structured version   Visualization version   GIF version

Theorem 19.23v 1902
Description: Version of 19.23 2080 with a dv condition instead of a non-freeness hypothesis. (Contributed by NM, 28-Jun-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 exim 1761 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
2 19.9v 1896 . . 3 (∃𝑥𝜓𝜓)
31, 2syl6ib 241 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
4 ax-5 1839 . . . 4 (𝜓 → ∀𝑥𝜓)
54imim2i 16 . . 3 ((∃𝑥𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
6 19.38 1766 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
75, 6syl 17 . 2 ((∃𝑥𝜑𝜓) → ∀𝑥(𝜑𝜓))
83, 7impbii 199 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  19.23vv  1903  pm11.53v  1906  equsalvw  1931  2mo2  2550  euind  3393  reuind  3411  unissb  4469  disjor  4634  dftr2  4754  ssrelrel  5220  cotrg  5507  dffun2  5898  fununi  5964  dff13  6512  dffi2  8329  aceq2  8942  psgnunilem4  17917  metcld  23104  metcld2  23105  isch2  28080  disjorf  29392  funcnv5mpt  29469  bnj1052  31043  bnj1030  31055  dfon2lem8  31695  bj-ssbeq  32627  bj-ssb0  32628  bj-ssb1a  32632  bj-ssb1  32633  bj-ssbequ2  32643  bj-ssbid2ALT  32646  ineleq  34119  elmapintrab  37882  elinintrab  37883  undmrnresiss  37910  elintima  37945  relexp0eq  37993  dfhe3  38069  pm10.52  38564  truniALT  38751  tpid3gVD  39077  truniALTVD  39114  onfrALTVD  39127  unisnALT  39162
  Copyright terms: Public domain W3C validator