Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxprnres Structured version   Visualization version   GIF version

Theorem inxprnres 34060
Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019.)
Assertion
Ref Expression
inxprnres (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem inxprnres
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5227 . . 3 Rel (𝐴 × ran (𝑅𝐴))
2 relin2 5237 . . 3 (Rel (𝐴 × ran (𝑅𝐴)) → Rel (𝑅 ∩ (𝐴 × ran (𝑅𝐴))))
31, 2ax-mp 5 . 2 Rel (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
4 relopab 5247 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
5 eleq1w 2684 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
6 breq1 4656 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
75, 6anbi12d 747 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑦)))
8 breq2 4657 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
98anbi2d 740 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝐴𝑧𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑤)))
107, 9opelopabg 4993 . . . 4 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤)))
1110el2v 33984 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤))
12 brinxprnres 34059 . . . 4 (𝑤 ∈ V → (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ (𝑧𝐴𝑧𝑅𝑤)))
1312elv 33983 . . 3 (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ (𝑧𝐴𝑧𝑅𝑤))
14 df-br 4654 . . 3 (𝑧(𝑅 ∩ (𝐴 × ran (𝑅𝐴)))𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅 ∩ (𝐴 × ran (𝑅𝐴))))
1511, 13, 143bitr2ri 289 . 2 (⟨𝑧, 𝑤⟩ ∈ (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)})
163, 4, 15eqrelriiv 5214 1 (𝑅 ∩ (𝐴 × ran (𝑅𝐴))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  cop 4183   class class class wbr 4653  {copab 4712   × cxp 5112  ran crn 5115  cres 5116  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  dfres4  34061
  Copyright terms: Public domain W3C validator