Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxprnres Structured version   Visualization version   Unicode version

Theorem inxprnres 34060
Description: Restriction of a class as a class of ordered pairs. (Contributed by Peter Mazsa, 2-Jan-2019.)
Assertion
Ref Expression
inxprnres  |-  ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
Distinct variable groups:    x, A, y    x, R, y

Proof of Theorem inxprnres
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5227 . . 3  |-  Rel  ( A  X.  ran  ( R  |`  A ) )
2 relin2 5237 . . 3  |-  ( Rel  ( A  X.  ran  ( R  |`  A ) )  ->  Rel  ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) ) )
31, 2ax-mp 5 . 2  |-  Rel  ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) )
4 relopab 5247 . 2  |-  Rel  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
5 eleq1w 2684 . . . . . 6  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
6 breq1 4656 . . . . . 6  |-  ( x  =  z  ->  (
x R y  <->  z R
y ) )
75, 6anbi12d 747 . . . . 5  |-  ( x  =  z  ->  (
( x  e.  A  /\  x R y )  <-> 
( z  e.  A  /\  z R y ) ) )
8 breq2 4657 . . . . . 6  |-  ( y  =  w  ->  (
z R y  <->  z R w ) )
98anbi2d 740 . . . . 5  |-  ( y  =  w  ->  (
( z  e.  A  /\  z R y )  <-> 
( z  e.  A  /\  z R w ) ) )
107, 9opelopabg 4993 . . . 4  |-  ( ( z  e.  _V  /\  w  e.  _V )  ->  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }  <-> 
( z  e.  A  /\  z R w ) ) )
1110el2v 33984 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( x  e.  A  /\  x R y ) }  <-> 
( z  e.  A  /\  z R w ) )
12 brinxprnres 34059 . . . 4  |-  ( w  e.  _V  ->  (
z ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) ) w  <->  ( z  e.  A  /\  z R w ) ) )
1312elv 33983 . . 3  |-  ( z ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) ) w  <->  ( z  e.  A  /\  z R w ) )
14 df-br 4654 . . 3  |-  ( z ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) ) w  <->  <. z ,  w >.  e.  ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) ) )
1511, 13, 143bitr2ri 289 . 2  |-  ( <.
z ,  w >.  e.  ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) )  <->  <. z ,  w >.  e. 
{ <. x ,  y
>.  |  ( x  e.  A  /\  x R y ) } )
163, 4, 15eqrelriiv 5214 1  |-  ( R  i^i  ( A  X.  ran  ( R  |`  A ) ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   <.cop 4183   class class class wbr 4653   {copab 4712    X. cxp 5112   ran crn 5115    |` cres 5116   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  dfres4  34061
  Copyright terms: Public domain W3C validator