| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > is1stc | Structured version Visualization version GIF version | ||
| Description: The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| Ref | Expression |
|---|---|
| is1stc.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| is1stc | ⊢ (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4444 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 2 | is1stc.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | syl6eqr 2674 | . . 3 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
| 4 | pweq 4161 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽) | |
| 5 | raleq 3138 | . . . . 5 ⊢ (𝑗 = 𝐽 → (∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))) | |
| 6 | 5 | anbi2d 740 | . . . 4 ⊢ (𝑗 = 𝐽 → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
| 7 | 4, 6 | rexeqbidv 3153 | . . 3 ⊢ (𝑗 = 𝐽 → (∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
| 8 | 3, 7 | raleqbidv 3152 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
| 9 | df-1stc 21242 | . 2 ⊢ 1st𝜔 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} | |
| 10 | 8, 9 | elrab2 3366 | 1 ⊢ (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ∩ cin 3573 𝒫 cpw 4158 ∪ cuni 4436 class class class wbr 4653 ωcom 7065 ≼ cdom 7953 Topctop 20698 1st𝜔c1stc 21240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-1stc 21242 |
| This theorem is referenced by: is1stc2 21245 1stctop 21246 |
| Copyright terms: Public domain | W3C validator |