MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is1stc Structured version   Visualization version   Unicode version

Theorem is1stc 21244
Description: The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.)
Hypothesis
Ref Expression
is1stc.1  |-  X  = 
U. J
Assertion
Ref Expression
is1stc  |-  ( J  e.  1stc  <->  ( J  e. 
Top  /\  A. x  e.  X  E. y  e.  ~P  J ( y  ~<_  om  /\  A. z  e.  J  ( x  e.  z  ->  x  e. 
U. ( y  i^i 
~P z ) ) ) ) )
Distinct variable groups:    x, y,
z, J    x, X
Allowed substitution hints:    X( y, z)

Proof of Theorem is1stc
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . 4  |-  ( j  =  J  ->  U. j  =  U. J )
2 is1stc.1 . . . 4  |-  X  = 
U. J
31, 2syl6eqr 2674 . . 3  |-  ( j  =  J  ->  U. j  =  X )
4 pweq 4161 . . . 4  |-  ( j  =  J  ->  ~P j  =  ~P J
)
5 raleq 3138 . . . . 5  |-  ( j  =  J  ->  ( A. z  e.  j 
( x  e.  z  ->  x  e.  U. ( y  i^i  ~P z ) )  <->  A. z  e.  J  ( x  e.  z  ->  x  e. 
U. ( y  i^i 
~P z ) ) ) )
65anbi2d 740 . . . 4  |-  ( j  =  J  ->  (
( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  x  e.  U. (
y  i^i  ~P z
) ) )  <->  ( y  ~<_  om  /\  A. z  e.  J  ( x  e.  z  ->  x  e.  U. ( y  i^i  ~P z ) ) ) ) )
74, 6rexeqbidv 3153 . . 3  |-  ( j  =  J  ->  ( E. y  e.  ~P  j ( y  ~<_  om 
/\  A. z  e.  j  ( x  e.  z  ->  x  e.  U. ( y  i^i  ~P z ) ) )  <->  E. y  e.  ~P  J ( y  ~<_  om 
/\  A. z  e.  J  ( x  e.  z  ->  x  e.  U. (
y  i^i  ~P z
) ) ) ) )
83, 7raleqbidv 3152 . 2  |-  ( j  =  J  ->  ( A. x  e.  U. j E. y  e.  ~P  j ( y  ~<_  om 
/\  A. z  e.  j  ( x  e.  z  ->  x  e.  U. ( y  i^i  ~P z ) ) )  <->  A. x  e.  X  E. y  e.  ~P  J ( y  ~<_  om 
/\  A. z  e.  J  ( x  e.  z  ->  x  e.  U. (
y  i^i  ~P z
) ) ) ) )
9 df-1stc 21242 . 2  |-  1stc  =  { j  e.  Top  | 
A. x  e.  U. j E. y  e.  ~P  j ( y  ~<_  om 
/\  A. z  e.  j  ( x  e.  z  ->  x  e.  U. ( y  i^i  ~P z ) ) ) }
108, 9elrab2 3366 1  |-  ( J  e.  1stc  <->  ( J  e. 
Top  /\  A. x  e.  X  E. y  e.  ~P  J ( y  ~<_  om  /\  A. z  e.  J  ( x  e.  z  ->  x  e. 
U. ( y  i^i 
~P z ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   omcom 7065    ~<_ cdom 7953   Topctop 20698   1stcc1stc 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-1stc 21242
This theorem is referenced by:  is1stc2  21245  1stctop  21246
  Copyright terms: Public domain W3C validator