![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscms | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
iscms | ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6203 | . . 3 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) ∈ V) | |
2 | fveq2 6191 | . . . . . . 7 ⊢ (𝑤 = 𝑀 → (dist‘𝑤) = (dist‘𝑀)) | |
3 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (dist‘𝑤) = (dist‘𝑀)) |
4 | id 22 | . . . . . . . 8 ⊢ (𝑏 = (Base‘𝑤) → 𝑏 = (Base‘𝑤)) | |
5 | fveq2 6191 | . . . . . . . . 9 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) = (Base‘𝑀)) | |
6 | iscms.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝑀) | |
7 | 5, 6 | syl6eqr 2674 | . . . . . . . 8 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) = 𝑋) |
8 | 4, 7 | sylan9eqr 2678 | . . . . . . 7 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → 𝑏 = 𝑋) |
9 | 8 | sqxpeqd 5141 | . . . . . 6 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (𝑏 × 𝑏) = (𝑋 × 𝑋)) |
10 | 3, 9 | reseq12d 5397 | . . . . 5 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
11 | iscms.2 | . . . . 5 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
12 | 10, 11 | syl6eqr 2674 | . . . 4 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = 𝐷) |
13 | 8 | fveq2d 6195 | . . . 4 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (CMet‘𝑏) = (CMet‘𝑋)) |
14 | 12, 13 | eleq12d 2695 | . . 3 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋))) |
15 | 1, 14 | sbcied 3472 | . 2 ⊢ (𝑤 = 𝑀 → ([(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋))) |
16 | df-cms 23132 | . 2 ⊢ CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} | |
17 | 15, 16 | elrab2 3366 | 1 ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 [wsbc 3435 × cxp 5112 ↾ cres 5116 ‘cfv 5888 Basecbs 15857 distcds 15950 MetSpcmt 22123 CMetcms 23052 CMetSpccms 23129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-res 5126 df-iota 5851 df-fv 5896 df-cms 23132 |
This theorem is referenced by: cmscmet 23143 cmsms 23145 cmspropd 23146 cmsss 23147 cncms 23151 |
Copyright terms: Public domain | W3C validator |