MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscms Structured version   Visualization version   Unicode version

Theorem iscms 23142
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1  |-  X  =  ( Base `  M
)
iscms.2  |-  D  =  ( ( dist `  M
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
iscms  |-  ( M  e. CMetSp 
<->  ( M  e.  MetSp  /\  D  e.  ( CMet `  X ) ) )

Proof of Theorem iscms
Dummy variables  w  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6203 . . 3  |-  ( w  =  M  ->  ( Base `  w )  e. 
_V )
2 fveq2 6191 . . . . . . 7  |-  ( w  =  M  ->  ( dist `  w )  =  ( dist `  M
) )
32adantr 481 . . . . . 6  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( dist `  w )  =  ( dist `  M
) )
4 id 22 . . . . . . . 8  |-  ( b  =  ( Base `  w
)  ->  b  =  ( Base `  w )
)
5 fveq2 6191 . . . . . . . . 9  |-  ( w  =  M  ->  ( Base `  w )  =  ( Base `  M
) )
6 iscms.1 . . . . . . . . 9  |-  X  =  ( Base `  M
)
75, 6syl6eqr 2674 . . . . . . . 8  |-  ( w  =  M  ->  ( Base `  w )  =  X )
84, 7sylan9eqr 2678 . . . . . . 7  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
b  =  X )
98sqxpeqd 5141 . . . . . 6  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( b  X.  b
)  =  ( X  X.  X ) )
103, 9reseq12d 5397 . . . . 5  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( dist `  w
)  |`  ( b  X.  b ) )  =  ( ( dist `  M
)  |`  ( X  X.  X ) ) )
11 iscms.2 . . . . 5  |-  D  =  ( ( dist `  M
)  |`  ( X  X.  X ) )
1210, 11syl6eqr 2674 . . . 4  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( dist `  w
)  |`  ( b  X.  b ) )  =  D )
138fveq2d 6195 . . . 4  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( CMet `  b )  =  ( CMet `  X
) )
1412, 13eleq12d 2695 . . 3  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( ( dist `  w )  |`  (
b  X.  b ) )  e.  ( CMet `  b )  <->  D  e.  ( CMet `  X )
) )
151, 14sbcied 3472 . 2  |-  ( w  =  M  ->  ( [. ( Base `  w
)  /  b ]. ( ( dist `  w
)  |`  ( b  X.  b ) )  e.  ( CMet `  b
)  <->  D  e.  ( CMet `  X ) ) )
16 df-cms 23132 . 2  |- CMetSp  =  {
w  e.  MetSp  |  [. ( Base `  w )  /  b ]. (
( dist `  w )  |`  ( b  X.  b
) )  e.  (
CMet `  b ) }
1715, 16elrab2 3366 1  |-  ( M  e. CMetSp 
<->  ( M  e.  MetSp  /\  D  e.  ( CMet `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435    X. cxp 5112    |` cres 5116   ` cfv 5888   Basecbs 15857   distcds 15950   MetSpcmt 22123   CMetcms 23052  CMetSpccms 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-res 5126  df-iota 5851  df-fv 5896  df-cms 23132
This theorem is referenced by:  cmscmet  23143  cmsms  23145  cmspropd  23146  cmsss  23147  cncms  23151
  Copyright terms: Public domain W3C validator