MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyggen Structured version   Visualization version   GIF version

Theorem iscyggen 18282
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
Assertion
Ref Expression
iscyggen (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem iscyggen
StepHypRef Expression
1 simpl 473 . . . . . 6 ((𝑥 = 𝑋𝑛 ∈ ℤ) → 𝑥 = 𝑋)
21oveq2d 6666 . . . . 5 ((𝑥 = 𝑋𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛 · 𝑋))
32mpteq2dva 4744 . . . 4 (𝑥 = 𝑋 → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
43rneqd 5353 . . 3 (𝑥 = 𝑋 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)))
54eqeq1d 2624 . 2 (𝑥 = 𝑋 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
6 iscyg3.e . 2 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
75, 6elrab2 3366 1 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  cz 11377  Basecbs 15857  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  iscyggen2  18283  cyggenod  18286  cyggenod2  18287  cygznlem1  19915  cygznlem3  19918
  Copyright terms: Public domain W3C validator