![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cygznlem1 | Structured version Visualization version GIF version |
Description: Lemma for cygzn 19919. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygzn.b | ⊢ 𝐵 = (Base‘𝐺) |
cygzn.n | ⊢ 𝑁 = if(𝐵 ∈ Fin, (#‘𝐵), 0) |
cygzn.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
cygzn.m | ⊢ · = (.g‘𝐺) |
cygzn.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
cygzn.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cygzn.g | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
cygzn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
Ref | Expression |
---|---|
cygznlem1 | ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygzn.n | . . . . 5 ⊢ 𝑁 = if(𝐵 ∈ Fin, (#‘𝐵), 0) | |
2 | hashcl 13147 | . . . . . . 7 ⊢ (𝐵 ∈ Fin → (#‘𝐵) ∈ ℕ0) | |
3 | 2 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → (#‘𝐵) ∈ ℕ0) |
4 | 0nn0 11307 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0) |
6 | 3, 5 | ifclda 4120 | . . . . 5 ⊢ (𝜑 → if(𝐵 ∈ Fin, (#‘𝐵), 0) ∈ ℕ0) |
7 | 1, 6 | syl5eqel 2705 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℕ0) |
9 | simprl 794 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ) | |
10 | simprr 796 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
11 | cygzn.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
12 | cygzn.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
13 | 11, 12 | zndvds 19898 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
14 | 8, 9, 10, 13 | syl3anc 1326 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
15 | cygzn.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
16 | cyggrp 18291 | . . . . . . 7 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) |
18 | cygzn.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
19 | cygzn.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
20 | cygzn.m | . . . . . . 7 ⊢ · = (.g‘𝐺) | |
21 | cygzn.e | . . . . . . 7 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
22 | eqid 2622 | . . . . . . 7 ⊢ (od‘𝐺) = (od‘𝐺) | |
23 | 19, 20, 21, 22 | cyggenod2 18287 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸) → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (#‘𝐵), 0)) |
24 | 17, 18, 23 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (#‘𝐵), 0)) |
25 | 24, 1 | syl6eqr 2674 | . . . 4 ⊢ (𝜑 → ((od‘𝐺)‘𝑋) = 𝑁) |
26 | 25 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((od‘𝐺)‘𝑋) = 𝑁) |
27 | 26 | breq1d 4663 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ 𝑁 ∥ (𝐾 − 𝑀))) |
28 | 17 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐺 ∈ Grp) |
29 | 19, 20, 21 | iscyggen 18282 | . . . . . 6 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)) |
30 | 29 | simplbi 476 | . . . . 5 ⊢ (𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵) |
31 | 18, 30 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
32 | 31 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑋 ∈ 𝐵) |
33 | eqid 2622 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
34 | 19, 22, 20, 33 | odcong 17968 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
35 | 28, 32, 9, 10, 34 | syl112anc 1330 | . 2 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾 − 𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
36 | 14, 27, 35 | 3bitr2d 296 | 1 ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ifcif 4086 class class class wbr 4653 ↦ cmpt 4729 ran crn 5115 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 0cc0 9936 − cmin 10266 ℕ0cn0 11292 ℤcz 11377 #chash 13117 ∥ cdvds 14983 Basecbs 15857 0gc0g 16100 Grpcgrp 17422 .gcmg 17540 odcod 17944 CycGrpccyg 18279 ℤRHomczrh 19848 ℤ/nℤczn 19851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-od 17948 df-cmn 18195 df-abl 18196 df-cyg 18280 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-rnghom 18715 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 |
This theorem is referenced by: cygznlem2a 19916 cygznlem3 19918 |
Copyright terms: Public domain | W3C validator |