MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrs Structured version   Visualization version   GIF version

Theorem isdrs 16934
Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
isdrs (𝐾 ∈ Dirset ↔ (𝐾 ∈ Preset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdrs
Dummy variables 𝑓 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
2 isdrs.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2syl6eqr 2674 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐵)
4 fveq2 6191 . . . . . . 7 (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾))
5 isdrs.l . . . . . . 7 = (le‘𝐾)
64, 5syl6eqr 2674 . . . . . 6 (𝑓 = 𝐾 → (le‘𝑓) = )
76sbceq1d 3440 . . . . 5 (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ [ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))))
83, 7sbceqbid 3442 . . . 4 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ [𝐵 / 𝑏][ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))))
9 fvex 6201 . . . . . 6 (Base‘𝐾) ∈ V
102, 9eqeltri 2697 . . . . 5 𝐵 ∈ V
11 fvex 6201 . . . . . 6 (le‘𝐾) ∈ V
125, 11eqeltri 2697 . . . . 5 ∈ V
13 neeq1 2856 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
1413adantr 481 . . . . . 6 ((𝑏 = 𝐵𝑟 = ) → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
15 rexeq 3139 . . . . . . . . 9 (𝑏 = 𝐵 → (∃𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∃𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
1615raleqbi1dv 3146 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
1716raleqbi1dv 3146 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
18 breq 4655 . . . . . . . . . 10 (𝑟 = → (𝑥𝑟𝑧𝑥 𝑧))
19 breq 4655 . . . . . . . . . 10 (𝑟 = → (𝑦𝑟𝑧𝑦 𝑧))
2018, 19anbi12d 747 . . . . . . . . 9 (𝑟 = → ((𝑥𝑟𝑧𝑦𝑟𝑧) ↔ (𝑥 𝑧𝑦 𝑧)))
2120rexbidv 3052 . . . . . . . 8 (𝑟 = → (∃𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
22212ralbidv 2989 . . . . . . 7 (𝑟 = → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
2317, 22sylan9bb 736 . . . . . 6 ((𝑏 = 𝐵𝑟 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
2414, 23anbi12d 747 . . . . 5 ((𝑏 = 𝐵𝑟 = ) → ((𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
2510, 12, 24sbc2ie 3505 . . . 4 ([𝐵 / 𝑏][ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
268, 25syl6bb 276 . . 3 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
27 df-drs 16929 . . 3 Dirset = {𝑓 ∈ Preset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
2826, 27elrab2 3366 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Preset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
29 3anass 1042 . 2 ((𝐾 ∈ Preset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)) ↔ (𝐾 ∈ Preset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
3028, 29bitr4i 267 1 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Preset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  [wsbc 3435  c0 3915   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948   Preset cpreset 16926  Dirsetcdrs 16927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-drs 16929
This theorem is referenced by:  drsdir  16935  drsprs  16936  drsbn0  16937  isdrs2  16939  isipodrs  17161
  Copyright terms: Public domain W3C validator