| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdrs | Structured version Visualization version Unicode version | ||
| Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| isdrs.b |
|
| isdrs.l |
|
| Ref | Expression |
|---|---|
| isdrs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . . 6
| |
| 2 | isdrs.b |
. . . . . 6
| |
| 3 | 1, 2 | syl6eqr 2674 |
. . . . 5
|
| 4 | fveq2 6191 |
. . . . . . 7
| |
| 5 | isdrs.l |
. . . . . . 7
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . . 6
|
| 7 | 6 | sbceq1d 3440 |
. . . . 5
|
| 8 | 3, 7 | sbceqbid 3442 |
. . . 4
|
| 9 | fvex 6201 |
. . . . . 6
| |
| 10 | 2, 9 | eqeltri 2697 |
. . . . 5
|
| 11 | fvex 6201 |
. . . . . 6
| |
| 12 | 5, 11 | eqeltri 2697 |
. . . . 5
|
| 13 | neeq1 2856 |
. . . . . . 7
| |
| 14 | 13 | adantr 481 |
. . . . . 6
|
| 15 | rexeq 3139 |
. . . . . . . . 9
| |
| 16 | 15 | raleqbi1dv 3146 |
. . . . . . . 8
|
| 17 | 16 | raleqbi1dv 3146 |
. . . . . . 7
|
| 18 | breq 4655 |
. . . . . . . . . 10
| |
| 19 | breq 4655 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | anbi12d 747 |
. . . . . . . . 9
|
| 21 | 20 | rexbidv 3052 |
. . . . . . . 8
|
| 22 | 21 | 2ralbidv 2989 |
. . . . . . 7
|
| 23 | 17, 22 | sylan9bb 736 |
. . . . . 6
|
| 24 | 14, 23 | anbi12d 747 |
. . . . 5
|
| 25 | 10, 12, 24 | sbc2ie 3505 |
. . . 4
|
| 26 | 8, 25 | syl6bb 276 |
. . 3
|
| 27 | df-drs 16929 |
. . 3
| |
| 28 | 26, 27 | elrab2 3366 |
. 2
|
| 29 | 3anass 1042 |
. 2
| |
| 30 | 28, 29 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-drs 16929 |
| This theorem is referenced by: drsdir 16935 drsprs 16936 drsbn0 16937 isdrs2 16939 isipodrs 17161 |
| Copyright terms: Public domain | W3C validator |