MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isipodrs Structured version   Visualization version   GIF version

Theorem isipodrs 17161
Description: Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isipodrs ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Distinct variable group:   𝑧,𝐴,𝑥,𝑦

Proof of Theorem isipodrs
StepHypRef Expression
1 eqid 2622 . . . . 5 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
21drsbn0 16937 . . . 4 ((toInc‘𝐴) ∈ Dirset → (Base‘(toInc‘𝐴)) ≠ ∅)
32neneqd 2799 . . 3 ((toInc‘𝐴) ∈ Dirset → ¬ (Base‘(toInc‘𝐴)) = ∅)
4 fvprc 6185 . . . . 5 𝐴 ∈ V → (toInc‘𝐴) = ∅)
54fveq2d 6195 . . . 4 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = (Base‘∅))
6 base0 15912 . . . 4 ∅ = (Base‘∅)
75, 6syl6eqr 2674 . . 3 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = ∅)
83, 7nsyl2 142 . 2 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
9 simp1 1061 . 2 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) → 𝐴 ∈ V)
10 eqid 2622 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
111, 10isdrs 16934 . . 3 ((toInc‘𝐴) ∈ Dirset ↔ ((toInc‘𝐴) ∈ Preset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
12 eqid 2622 . . . . . . . 8 (toInc‘𝐴) = (toInc‘𝐴)
1312ipopos 17160 . . . . . . 7 (toInc‘𝐴) ∈ Poset
14 posprs 16949 . . . . . . 7 ((toInc‘𝐴) ∈ Poset → (toInc‘𝐴) ∈ Preset )
1513, 14mp1i 13 . . . . . 6 (𝐴 ∈ V → (toInc‘𝐴) ∈ Preset )
16 id 22 . . . . . 6 (𝐴 ∈ V → 𝐴 ∈ V)
1715, 162thd 255 . . . . 5 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Preset ↔ 𝐴 ∈ V))
1812ipobas 17155 . . . . . . 7 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
19 neeq1 2856 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (𝐴 ≠ ∅ ↔ (Base‘(toInc‘𝐴)) ≠ ∅))
20 rexeq 3139 . . . . . . . . . 10 (𝐴 = (Base‘(toInc‘𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2120raleqbi1dv 3146 . . . . . . . . 9 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2221raleqbi1dv 3146 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2319, 22anbi12d 747 . . . . . . 7 (𝐴 = (Base‘(toInc‘𝐴)) → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
2418, 23syl 17 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
25 simpll 790 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝐴 ∈ V)
26 simplrl 800 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑥𝐴)
27 simpr 477 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
2812, 10ipole 17158 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑥𝐴𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
2925, 26, 27, 28syl3anc 1326 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
30 simplrr 801 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑦𝐴)
3112, 10ipole 17158 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑦𝐴𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3225, 30, 27, 31syl3anc 1326 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3329, 32anbi12d 747 . . . . . . . . . 10 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑧𝑦𝑧)))
34 unss 3787 . . . . . . . . . 10 ((𝑥𝑧𝑦𝑧) ↔ (𝑥𝑦) ⊆ 𝑧)
3533, 34syl6bb 276 . . . . . . . . 9 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑦) ⊆ 𝑧))
3635rexbidva 3049 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
37362ralbidva 2988 . . . . . . 7 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
3837anbi2d 740 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
3924, 38bitr3d 270 . . . . 5 (𝐴 ∈ V → (((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4017, 39anbi12d 747 . . . 4 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Preset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))))
41 3anass 1042 . . . 4 (((toInc‘𝐴) ∈ Preset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((toInc‘𝐴) ∈ Preset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
42 3anass 1042 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4340, 41, 423bitr4g 303 . . 3 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Preset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4411, 43syl5bb 272 . 2 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
458, 9, 44pm5.21nii 368 1 ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cun 3572  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948   Preset cpreset 16926  Dirsetcdrs 16927  Posetcpo 16940  toInccipo 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-preset 16928  df-drs 16929  df-poset 16946  df-ipo 17152
This theorem is referenced by:  ipodrscl  17162  fpwipodrs  17164  ipodrsima  17165  nacsfix  37275
  Copyright terms: Public domain W3C validator