![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfld2 | Structured version Visualization version GIF version |
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
isfld2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flddivrng 33798 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) | |
2 | fldcrng 33803 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) | |
3 | 1, 2 | jca 554 | . 2 ⊢ (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
4 | iscrngo 33795 | . . . 4 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
5 | 4 | simprbi 480 | . . 3 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ Com2) |
6 | elin 3796 | . . . . 5 ⊢ (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) | |
7 | 6 | biimpri 218 | . . . 4 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2)) |
8 | df-fld 33791 | . . . 4 ⊢ Fld = (DivRingOps ∩ Com2) | |
9 | 7, 8 | syl6eleqr 2712 | . . 3 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld) |
10 | 5, 9 | sylan2 491 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld) |
11 | 3, 10 | impbii 199 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∩ cin 3573 RingOpscrngo 33693 DivRingOpscdrng 33747 Com2ccm2 33788 Fldcfld 33790 CRingOpsccring 33792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-1st 7168 df-2nd 7169 df-drngo 33748 df-fld 33791 df-crngo 33793 |
This theorem is referenced by: flddmn 33857 isfldidl 33867 |
Copyright terms: Public domain | W3C validator |