Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln4 Structured version   Visualization version   GIF version

Theorem islln4 34793
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐵 = (Base‘𝐾)
llnset.c 𝐶 = ( ⋖ ‘𝐾)
llnset.a 𝐴 = (Atoms‘𝐾)
llnset.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln4 ((𝐾𝐷𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐵(𝑝)   𝐶(𝑝)   𝐷(𝑝)   𝑁(𝑝)

Proof of Theorem islln4
StepHypRef Expression
1 llnset.b . . 3 𝐵 = (Base‘𝐾)
2 llnset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 llnset.a . . 3 𝐴 = (Atoms‘𝐾)
4 llnset.n . . 3 𝑁 = (LLines‘𝐾)
51, 2, 3, 4islln 34792 . 2 (𝐾𝐷 → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
65baibd 948 1 ((𝐾𝐷𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  Basecbs 15857  ccvr 34549  Atomscatm 34550  LLinesclln 34777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-llines 34784
This theorem is referenced by:  islln3  34796  llncmp  34808
  Copyright terms: Public domain W3C validator