Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnm Structured version   Visualization version   GIF version

Theorem islnm 37647
Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypothesis
Ref Expression
islnm.s 𝑆 = (LSubSp‘𝑀)
Assertion
Ref Expression
islnm (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
Distinct variable groups:   𝑖,𝑀   𝑆,𝑖

Proof of Theorem islnm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4 (𝑤 = 𝑀 → (LSubSp‘𝑤) = (LSubSp‘𝑀))
2 islnm.s . . . 4 𝑆 = (LSubSp‘𝑀)
31, 2syl6eqr 2674 . . 3 (𝑤 = 𝑀 → (LSubSp‘𝑤) = 𝑆)
4 oveq1 6657 . . . 4 (𝑤 = 𝑀 → (𝑤s 𝑖) = (𝑀s 𝑖))
54eleq1d 2686 . . 3 (𝑤 = 𝑀 → ((𝑤s 𝑖) ∈ LFinGen ↔ (𝑀s 𝑖) ∈ LFinGen))
63, 5raleqbidv 3152 . 2 (𝑤 = 𝑀 → (∀𝑖 ∈ (LSubSp‘𝑤)(𝑤s 𝑖) ∈ LFinGen ↔ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
7 df-lnm 37646 . 2 LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤s 𝑖) ∈ LFinGen}
86, 7elrab2 3366 1 (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  s cress 15858  LModclmod 18863  LSubSpclss 18932  LFinGenclfig 37637  LNoeMclnm 37645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-lnm 37646
This theorem is referenced by:  islnm2  37648  lnmlmod  37649  lnmlssfg  37650  lnmlsslnm  37651  lnmepi  37655  lmhmlnmsplit  37657
  Copyright terms: Public domain W3C validator