![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islnm | Structured version Visualization version GIF version |
Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
islnm.s | ⊢ 𝑆 = (LSubSp‘𝑀) |
Ref | Expression |
---|---|
islnm | ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6191 | . . . 4 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = (LSubSp‘𝑀)) | |
2 | islnm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑀) | |
3 | 1, 2 | syl6eqr 2674 | . . 3 ⊢ (𝑤 = 𝑀 → (LSubSp‘𝑤) = 𝑆) |
4 | oveq1 6657 | . . . 4 ⊢ (𝑤 = 𝑀 → (𝑤 ↾s 𝑖) = (𝑀 ↾s 𝑖)) | |
5 | 4 | eleq1d 2686 | . . 3 ⊢ (𝑤 = 𝑀 → ((𝑤 ↾s 𝑖) ∈ LFinGen ↔ (𝑀 ↾s 𝑖) ∈ LFinGen)) |
6 | 3, 5 | raleqbidv 3152 | . 2 ⊢ (𝑤 = 𝑀 → (∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen ↔ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
7 | df-lnm 37646 | . 2 ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} | |
8 | 6, 7 | elrab2 3366 | 1 ⊢ (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖 ∈ 𝑆 (𝑀 ↾s 𝑖) ∈ LFinGen)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ‘cfv 5888 (class class class)co 6650 ↾s cress 15858 LModclmod 18863 LSubSpclss 18932 LFinGenclfig 37637 LNoeMclnm 37645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-lnm 37646 |
This theorem is referenced by: islnm2 37648 lnmlmod 37649 lnmlssfg 37650 lnmlsslnm 37651 lnmepi 37655 lmhmlnmsplit 37657 |
Copyright terms: Public domain | W3C validator |