Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnm Structured version   Visualization version   Unicode version

Theorem islnm 37647
Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypothesis
Ref Expression
islnm.s  |-  S  =  ( LSubSp `  M )
Assertion
Ref Expression
islnm  |-  ( M  e. LNoeM 
<->  ( M  e.  LMod  /\ 
A. i  e.  S  ( Ms  i )  e. LFinGen ) )
Distinct variable groups:    i, M    S, i

Proof of Theorem islnm
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( w  =  M  ->  ( LSubSp `
 w )  =  ( LSubSp `  M )
)
2 islnm.s . . . 4  |-  S  =  ( LSubSp `  M )
31, 2syl6eqr 2674 . . 3  |-  ( w  =  M  ->  ( LSubSp `
 w )  =  S )
4 oveq1 6657 . . . 4  |-  ( w  =  M  ->  (
ws  i )  =  ( Ms  i ) )
54eleq1d 2686 . . 3  |-  ( w  =  M  ->  (
( ws  i )  e. LFinGen  <->  ( Ms  i )  e. LFinGen )
)
63, 5raleqbidv 3152 . 2  |-  ( w  =  M  ->  ( A. i  e.  ( LSubSp `
 w ) ( ws  i )  e. LFinGen  <->  A. i  e.  S  ( Ms  i
)  e. LFinGen ) )
7 df-lnm 37646 . 2  |- LNoeM  =  {
w  e.  LMod  |  A. i  e.  ( LSubSp `  w ) ( ws  i )  e. LFinGen }
86, 7elrab2 3366 1  |-  ( M  e. LNoeM 
<->  ( M  e.  LMod  /\ 
A. i  e.  S  ( Ms  i )  e. LFinGen ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   ↾s cress 15858   LModclmod 18863   LSubSpclss 18932  LFinGenclfig 37637  LNoeMclnm 37645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-lnm 37646
This theorem is referenced by:  islnm2  37648  lnmlmod  37649  lnmlssfg  37650  lnmlsslnm  37651  lnmepi  37655  lmhmlnmsplit  37657
  Copyright terms: Public domain W3C validator