MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismnddef Structured version   Visualization version   GIF version

Theorem ismnddef 17296
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b 𝐵 = (Base‘𝐺)
ismnddef.p + = (+g𝐺)
Assertion
Ref Expression
ismnddef (𝐺 ∈ Mnd ↔ (𝐺 ∈ SGrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Distinct variable groups:   𝐵,𝑎,𝑒   + ,𝑎,𝑒
Allowed substitution hints:   𝐺(𝑒,𝑎)

Proof of Theorem ismnddef
Dummy variables 𝑏 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . 3 (Base‘𝑔) ∈ V
2 fvex 6201 . . 3 (+g𝑔) ∈ V
3 fveq2 6191 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 ismnddef.b . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4syl6eqr 2674 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
65eqeq2d 2632 . . . . 5 (𝑔 = 𝐺 → (𝑏 = (Base‘𝑔) ↔ 𝑏 = 𝐵))
7 fveq2 6191 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 ismnddef.p . . . . . . 7 + = (+g𝐺)
97, 8syl6eqr 2674 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
109eqeq2d 2632 . . . . 5 (𝑔 = 𝐺 → (𝑝 = (+g𝑔) ↔ 𝑝 = + ))
116, 10anbi12d 747 . . . 4 (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g𝑔)) ↔ (𝑏 = 𝐵𝑝 = + )))
12 simpl 473 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → 𝑏 = 𝐵)
13 oveq 6656 . . . . . . . . 9 (𝑝 = + → (𝑒𝑝𝑎) = (𝑒 + 𝑎))
1413eqeq1d 2624 . . . . . . . 8 (𝑝 = + → ((𝑒𝑝𝑎) = 𝑎 ↔ (𝑒 + 𝑎) = 𝑎))
15 oveq 6656 . . . . . . . . 9 (𝑝 = + → (𝑎𝑝𝑒) = (𝑎 + 𝑒))
1615eqeq1d 2624 . . . . . . . 8 (𝑝 = + → ((𝑎𝑝𝑒) = 𝑎 ↔ (𝑎 + 𝑒) = 𝑎))
1714, 16anbi12d 747 . . . . . . 7 (𝑝 = + → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
1817adantl 482 . . . . . 6 ((𝑏 = 𝐵𝑝 = + ) → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
1912, 18raleqbidv 3152 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → (∀𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∀𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2012, 19rexeqbidv 3153 . . . 4 ((𝑏 = 𝐵𝑝 = + ) → (∃𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2111, 20syl6bi 243 . . 3 (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g𝑔)) → (∃𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))))
221, 2, 21sbc2iedv 3506 . 2 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
23 df-mnd 17295 . 2 Mnd = {𝑔 ∈ SGrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎)}
2422, 23elrab2 3366 1 (𝐺 ∈ Mnd ↔ (𝐺 ∈ SGrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  [wsbc 3435  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  SGrpcsgrp 17283  Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-mnd 17295
This theorem is referenced by:  ismnd  17297  isnmnd  17298  mndsgrp  17299  mnd1  17331  isringrng  41881  2zrngamnd  41941
  Copyright terms: Public domain W3C validator