Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isogrp Structured version   Visualization version   GIF version

Theorem isogrp 29702
Description: A (left) ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
isogrp (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))

Proof of Theorem isogrp
StepHypRef Expression
1 df-ogrp 29700 . 2 oGrp = (Grp ∩ oMnd)
21elin2 3801 1 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wcel 1990  Grpcgrp 17422  oMndcomnd 29697  oGrpcogrp 29698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ogrp 29700
This theorem is referenced by:  ogrpgrp  29703  ogrpinvOLD  29715  ogrpinv0le  29716  ogrpsub  29717  ogrpaddlt  29718  isarchi3  29741  archirng  29742  archirngz  29743  archiabllem1a  29745  archiabllem1b  29746  archiabllem2a  29748  archiabllem2c  29749  archiabllem2b  29750  archiabl  29752  orngsqr  29804  ornglmulle  29805  orngrmulle  29806  ofldtos  29811  suborng  29815  reofld  29840  nn0omnd  29841
  Copyright terms: Public domain W3C validator