![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version Unicode version |
Description: A (left) ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isogrp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ogrp 29700 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | elin2 3801 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ogrp 29700 |
This theorem is referenced by: ogrpgrp 29703 ogrpinvOLD 29715 ogrpinv0le 29716 ogrpsub 29717 ogrpaddlt 29718 isarchi3 29741 archirng 29742 archirngz 29743 archiabllem1a 29745 archiabllem1b 29746 archiabllem2a 29748 archiabllem2c 29749 archiabllem2b 29750 archiabl 29752 orngsqr 29804 ornglmulle 29805 orngrmulle 29806 ofldtos 29811 suborng 29815 reofld 29840 nn0omnd 29841 |
Copyright terms: Public domain | W3C validator |