Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinv0le Structured version   Visualization version   GIF version

Theorem ogrpinv0le 29716
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpsub.0 𝐵 = (Base‘𝐺)
ogrpsub.1 = (le‘𝐺)
ogrpinv.2 𝐼 = (invg𝐺)
ogrpinv.3 0 = (0g𝐺)
Assertion
Ref Expression
ogrpinv0le ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 𝑋 ↔ (𝐼𝑋) 0 ))

Proof of Theorem ogrpinv0le
StepHypRef Expression
1 isogrp 29702 . . . . . 6 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 480 . . . . 5 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
32ad2antrr 762 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝐺 ∈ oMnd)
4 omndmnd 29704 . . . . 5 (𝐺 ∈ oMnd → 𝐺 ∈ Mnd)
5 ogrpsub.0 . . . . . 6 𝐵 = (Base‘𝐺)
6 ogrpinv.3 . . . . . 6 0 = (0g𝐺)
75, 6mndidcl 17308 . . . . 5 (𝐺 ∈ Mnd → 0𝐵)
83, 4, 73syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 0𝐵)
9 simplr 792 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑋𝐵)
10 ogrpgrp 29703 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
1110ad2antrr 762 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝐺 ∈ Grp)
12 ogrpinv.2 . . . . . 6 𝐼 = (invg𝐺)
135, 12grpinvcl 17467 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
1411, 9, 13syl2anc 693 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝐼𝑋) ∈ 𝐵)
15 simpr 477 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 𝑋)
16 ogrpsub.1 . . . . 5 = (le‘𝐺)
17 eqid 2622 . . . . 5 (+g𝐺) = (+g𝐺)
185, 16, 17omndadd 29706 . . . 4 ((𝐺 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) (𝑋(+g𝐺)(𝐼𝑋)))
193, 8, 9, 14, 15, 18syl131anc 1339 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) (𝑋(+g𝐺)(𝐼𝑋)))
205, 17, 6grplid 17452 . . . 4 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
2111, 14, 20syl2anc 693 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
225, 17, 6, 12grprinv 17469 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2311, 9, 22syl2anc 693 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2419, 21, 233brtr3d 4684 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝐼𝑋) 0 )
252ad2antrr 762 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝐺 ∈ oMnd)
2610ad2antrr 762 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝐺 ∈ Grp)
27 simplr 792 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝑋𝐵)
2826, 27, 13syl2anc 693 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → (𝐼𝑋) ∈ 𝐵)
2925, 4, 73syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 0𝐵)
30 simpr 477 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → (𝐼𝑋) 0 )
315, 16, 17omndadd 29706 . . . 4 ((𝐺 ∈ oMnd ∧ ((𝐼𝑋) ∈ 𝐵0𝐵𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) ( 0 (+g𝐺)𝑋))
3225, 28, 29, 27, 30, 31syl131anc 1339 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) ( 0 (+g𝐺)𝑋))
335, 17, 6, 12grplinv 17468 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
3426, 27, 33syl2anc 693 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
355, 17, 6grplid 17452 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)𝑋) = 𝑋)
3626, 27, 35syl2anc 693 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ( 0 (+g𝐺)𝑋) = 𝑋)
3732, 34, 363brtr3d 4684 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 0 𝑋)
3824, 37impbida 877 1 ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 𝑋 ↔ (𝐼𝑋) 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  lecple 15948  0gc0g 16100  Mndcmnd 17294  Grpcgrp 17422  invgcminusg 17423  oMndcomnd 29697  oGrpcogrp 29698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-omnd 29699  df-ogrp 29700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator