MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrrg Structured version   Visualization version   GIF version

Theorem isrrg 19288
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
isrrg (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   · (𝑦)   𝐸(𝑦)   0 (𝑦)

Proof of Theorem isrrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . 5 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
21eqeq1d 2624 . . . 4 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 ))
32imbi1d 331 . . 3 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0𝑦 = 0 ) ↔ ((𝑋 · 𝑦) = 0𝑦 = 0 )))
43ralbidv 2986 . 2 (𝑥 = 𝑋 → (∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 ) ↔ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
5 rrgval.e . . 3 𝐸 = (RLReg‘𝑅)
6 rrgval.b . . 3 𝐵 = (Base‘𝑅)
7 rrgval.t . . 3 · = (.r𝑅)
8 rrgval.z . . 3 0 = (0g𝑅)
95, 6, 7, 8rrgval 19287 . 2 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
104, 9elrab2 3366 1 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  0gc0g 16100  RLRegcrlreg 19279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-rlreg 19283
This theorem is referenced by:  rrgeq0i  19289  unitrrg  19293  isdomn2  19299
  Copyright terms: Public domain W3C validator