MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2l Structured version   Visualization version   GIF version

Theorem itg2l 23496
Description: Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2l (𝐴𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝐴 = (∫1𝑔)))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2l
StepHypRef Expression
1 itg2val.1 . . 3 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔))}
21eleq2i 2693 . 2 (𝐴𝐿𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔))})
3 simpr 477 . . . . 5 ((𝑔𝑟𝐹𝐴 = (∫1𝑔)) → 𝐴 = (∫1𝑔))
4 fvex 6201 . . . . 5 (∫1𝑔) ∈ V
53, 4syl6eqel 2709 . . . 4 ((𝑔𝑟𝐹𝐴 = (∫1𝑔)) → 𝐴 ∈ V)
65rexlimivw 3029 . . 3 (∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝐴 = (∫1𝑔)) → 𝐴 ∈ V)
7 eqeq1 2626 . . . . 5 (𝑥 = 𝐴 → (𝑥 = (∫1𝑔) ↔ 𝐴 = (∫1𝑔)))
87anbi2d 740 . . . 4 (𝑥 = 𝐴 → ((𝑔𝑟𝐹𝑥 = (∫1𝑔)) ↔ (𝑔𝑟𝐹𝐴 = (∫1𝑔))))
98rexbidv 3052 . . 3 (𝑥 = 𝐴 → (∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝐴 = (∫1𝑔))))
106, 9elab3 3358 . 2 (𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔))} ↔ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝐴 = (∫1𝑔)))
112, 10bitri 264 1 (𝐴𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝐴 = (∫1𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200   class class class wbr 4653  dom cdm 5114  cfv 5888  𝑟 cofr 6896  cle 10075  1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896
This theorem is referenced by:  itg2lr  23497
  Copyright terms: Public domain W3C validator