MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2lr Structured version   Visualization version   GIF version

Theorem itg2lr 23497
Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2lr ((𝐺 ∈ dom ∫1𝐺𝑟𝐹) → (∫1𝐺) ∈ 𝐿)
Distinct variable groups:   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2lr
StepHypRef Expression
1 eqid 2622 . . 3 (∫1𝐺) = (∫1𝐺)
2 breq1 4656 . . . . 5 (𝑔 = 𝐺 → (𝑔𝑟𝐹𝐺𝑟𝐹))
3 fveq2 6191 . . . . . 6 (𝑔 = 𝐺 → (∫1𝑔) = (∫1𝐺))
43eqeq2d 2632 . . . . 5 (𝑔 = 𝐺 → ((∫1𝐺) = (∫1𝑔) ↔ (∫1𝐺) = (∫1𝐺)))
52, 4anbi12d 747 . . . 4 (𝑔 = 𝐺 → ((𝑔𝑟𝐹 ∧ (∫1𝐺) = (∫1𝑔)) ↔ (𝐺𝑟𝐹 ∧ (∫1𝐺) = (∫1𝐺))))
65rspcev 3309 . . 3 ((𝐺 ∈ dom ∫1 ∧ (𝐺𝑟𝐹 ∧ (∫1𝐺) = (∫1𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
71, 6mpanr2 720 . 2 ((𝐺 ∈ dom ∫1𝐺𝑟𝐹) → ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
8 itg2val.1 . . 3 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹𝑥 = (∫1𝑔))}
98itg2l 23496 . 2 ((∫1𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔𝑟𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
107, 9sylibr 224 1 ((𝐺 ∈ dom ∫1𝐺𝑟𝐹) → (∫1𝐺) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913   class class class wbr 4653  dom cdm 5114  cfv 5888  𝑟 cofr 6896  cle 10075  1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  itg2ub  23500
  Copyright terms: Public domain W3C validator