MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2l Structured version   Visualization version   Unicode version

Theorem itg2l 23496
Description: Elementhood in the set  L of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1  |-  L  =  { x  |  E. g  e.  dom  S.1 (
g  oR  <_  F  /\  x  =  ( S.1 `  g ) ) }
Assertion
Ref Expression
itg2l  |-  ( A  e.  L  <->  E. g  e.  dom  S.1 ( g  oR  <_  F  /\  A  =  ( S.1 `  g ) ) )
Distinct variable groups:    x, g, A    g, F, x
Allowed substitution hints:    L( x, g)

Proof of Theorem itg2l
StepHypRef Expression
1 itg2val.1 . . 3  |-  L  =  { x  |  E. g  e.  dom  S.1 (
g  oR  <_  F  /\  x  =  ( S.1 `  g ) ) }
21eleq2i 2693 . 2  |-  ( A  e.  L  <->  A  e.  { x  |  E. g  e.  dom  S.1 ( g  oR  <_  F  /\  x  =  ( S.1 `  g ) ) } )
3 simpr 477 . . . . 5  |-  ( ( g  oR  <_  F  /\  A  =  ( S.1 `  g ) )  ->  A  =  ( S.1 `  g ) )
4 fvex 6201 . . . . 5  |-  ( S.1 `  g )  e.  _V
53, 4syl6eqel 2709 . . . 4  |-  ( ( g  oR  <_  F  /\  A  =  ( S.1 `  g ) )  ->  A  e.  _V )
65rexlimivw 3029 . . 3  |-  ( E. g  e.  dom  S.1 ( g  oR  <_  F  /\  A  =  ( S.1 `  g
) )  ->  A  e.  _V )
7 eqeq1 2626 . . . . 5  |-  ( x  =  A  ->  (
x  =  ( S.1 `  g )  <->  A  =  ( S.1 `  g ) ) )
87anbi2d 740 . . . 4  |-  ( x  =  A  ->  (
( g  oR  <_  F  /\  x  =  ( S.1 `  g
) )  <->  ( g  oR  <_  F  /\  A  =  ( S.1 `  g ) ) ) )
98rexbidv 3052 . . 3  |-  ( x  =  A  ->  ( E. g  e.  dom  S.1 ( g  oR  <_  F  /\  x  =  ( S.1 `  g
) )  <->  E. g  e.  dom  S.1 ( g  oR  <_  F  /\  A  =  ( S.1 `  g ) ) ) )
106, 9elab3 3358 . 2  |-  ( A  e.  { x  |  E. g  e.  dom  S.1 ( g  oR  <_  F  /\  x  =  ( S.1 `  g
) ) }  <->  E. g  e.  dom  S.1 ( g  oR  <_  F  /\  A  =  ( S.1 `  g ) ) )
112, 10bitri 264 1  |-  ( A  e.  L  <->  E. g  e.  dom  S.1 ( g  oR  <_  F  /\  A  =  ( S.1 `  g ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   dom cdm 5114   ` cfv 5888    oRcofr 6896    <_ cle 10075   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896
This theorem is referenced by:  itg2lr  23497
  Copyright terms: Public domain W3C validator