![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itgocn | Structured version Visualization version GIF version |
Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
itgocn | ⊢ (IntgOver‘𝑆) ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itgo 37729 | . . . . 5 ⊢ IntgOver = (𝑎 ∈ 𝒫 ℂ ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ (Poly‘𝑎)((𝑐‘𝑏) = 0 ∧ ((coeff‘𝑐)‘(deg‘𝑐)) = 1)}) | |
2 | 1 | dmmptss 5631 | . . . 4 ⊢ dom IntgOver ⊆ 𝒫 ℂ |
3 | 2 | sseli 3599 | . . 3 ⊢ (𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ) |
4 | cnex 10017 | . . . . 5 ⊢ ℂ ∈ V | |
5 | 4 | elpw2 4828 | . . . 4 ⊢ (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ) |
6 | itgoval 37731 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) | |
7 | ssrab2 3687 | . . . . 5 ⊢ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ ℂ | |
8 | 6, 7 | syl6eqss 3655 | . . . 4 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
9 | 5, 8 | sylbi 207 | . . 3 ⊢ (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) ⊆ ℂ) |
10 | 3, 9 | syl 17 | . 2 ⊢ (𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
11 | ndmfv 6218 | . . 3 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) = ∅) | |
12 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ ℂ | |
13 | 11, 12 | syl6eqss 3655 | . 2 ⊢ (¬ 𝑆 ∈ dom IntgOver → (IntgOver‘𝑆) ⊆ ℂ) |
14 | 10, 13 | pm2.61i 176 | 1 ⊢ (IntgOver‘𝑆) ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 {crab 2916 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 dom cdm 5114 ‘cfv 5888 ℂcc 9934 0cc0 9936 1c1 9937 Polycply 23940 coeffccoe 23942 degcdgr 23943 IntgOvercitgo 37727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-cnex 9992 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-itgo 37729 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |