![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iundifdif | Structured version Visualization version GIF version |
Description: The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd 29380. (Contributed by Thierry Arnoux, 4-Sep-2016.) |
Ref | Expression |
---|---|
iundifdif.o | ⊢ 𝑂 ∈ V |
iundifdif.2 | ⊢ 𝐴 ⊆ 𝒫 𝑂 |
Ref | Expression |
---|---|
iundifdif | ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iundif2 4587 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) | |
2 | intiin 4574 | . . . . 5 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
3 | 2 | difeq2i 3725 | . . . 4 ⊢ (𝑂 ∖ ∩ 𝐴) = (𝑂 ∖ ∩ 𝑥 ∈ 𝐴 𝑥) |
4 | 1, 3 | eqtr4i 2647 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥) = (𝑂 ∖ ∩ 𝐴) |
5 | 4 | difeq2i 3725 | . 2 ⊢ (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥)) = (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) |
6 | iundifdif.2 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 𝑂 | |
7 | 6 | jctl 564 | . . . 4 ⊢ (𝐴 ≠ ∅ → (𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅)) |
8 | intssuni2 4502 | . . . 4 ⊢ ((𝐴 ⊆ 𝒫 𝑂 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝒫 𝑂) | |
9 | unipw 4918 | . . . . . 6 ⊢ ∪ 𝒫 𝑂 = 𝑂 | |
10 | 9 | sseq2i 3630 | . . . . 5 ⊢ (∩ 𝐴 ⊆ ∪ 𝒫 𝑂 ↔ ∩ 𝐴 ⊆ 𝑂) |
11 | 10 | biimpi 206 | . . . 4 ⊢ (∩ 𝐴 ⊆ ∪ 𝒫 𝑂 → ∩ 𝐴 ⊆ 𝑂) |
12 | 7, 8, 11 | 3syl 18 | . . 3 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑂) |
13 | dfss4 3858 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝑂 ↔ (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) | |
14 | 12, 13 | sylib 208 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑂 ∖ (𝑂 ∖ ∩ 𝐴)) = ∩ 𝐴) |
15 | 5, 14 | syl5req 2669 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 = (𝑂 ∖ ∪ 𝑥 ∈ 𝐴 (𝑂 ∖ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 ∪ cuni 4436 ∩ cint 4475 ∪ ciun 4520 ∩ ciin 4521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |