![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunrdx | Structured version Visualization version GIF version |
Description: Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
Ref | Expression |
---|---|
iunrdx.1 | ⊢ (𝜑 → 𝐹:𝐴–onto→𝐶) |
iunrdx.2 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
iunrdx | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunrdx.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴–onto→𝐶) | |
2 | fof 6115 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐶 → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
4 | 3 | ffvelrnda 6359 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐶) |
5 | foelrn 6378 | . . . . . 6 ⊢ ((𝐹:𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) | |
6 | 1, 5 | sylan 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
7 | iunrdx.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) | |
8 | 7 | eleq2d 2687 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵)) |
9 | 4, 6, 8 | rexxfrd 4881 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
10 | 9 | bicomd 213 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
11 | 10 | abbidv 2741 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷}) |
12 | df-iun 4522 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
13 | df-iun 4522 | . 2 ⊢ ∪ 𝑦 ∈ 𝐶 𝐷 = {𝑧 ∣ ∃𝑦 ∈ 𝐶 𝑧 ∈ 𝐷} | |
14 | 11, 12, 13 | 3eqtr4g 2681 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∃wrex 2913 ∪ ciun 4520 ⟶wf 5884 –onto→wfo 5886 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 |
This theorem is referenced by: volmeas 30294 |
Copyright terms: Public domain | W3C validator |