![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sseq2i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq2i | ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq2 3627 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 |
This theorem is referenced by: sseqtri 3637 syl6sseq 3651 abss 3671 ssrab 3680 ssindif0 4031 difcom 4053 ssunsn2 4359 ssunpr 4365 sspr 4366 sstp 4367 ssintrab 4500 iunpwss 4618 propssopi 4971 dffun2 5898 ssimaex 6263 elpwun 6977 frfi 8205 alephislim 8906 cardaleph 8912 fin1a2lem12 9233 zornn0g 9327 ssxr 10107 nnwo 11753 isstruct 15870 issubm 17347 grpissubg 17614 islinds 20148 basdif0 20757 tgdif0 20796 cmpsublem 21202 cmpsub 21203 hauscmplem 21209 2ndcctbss 21258 fbncp 21643 cnextfval 21866 eltsms 21936 reconn 22631 axcontlem3 25846 axcontlem4 25847 umgredg 26033 nbuhgr 26239 uhgrvd00 26430 vtxdginducedm1 26439 chsscon1i 28321 hatomistici 29221 chirredlem4 29252 atabs2i 29261 mdsymlem1 29262 mdsymlem3 29264 mdsymlem6 29267 mdsymlem8 29269 dmdbr5ati 29281 iundifdif 29381 nocvxminlem 31893 nocvxmin 31894 poimir 33442 ismblfin 33450 ntrk0kbimka 38337 ntrclsk3 38368 ntrneicls11 38388 abssf 39295 ssrabf 39298 stoweidlem57 40274 ovnsubadd 40786 ovnovollem3 40872 issubmgm 41789 linccl 42203 lincdifsn 42213 |
Copyright terms: Public domain | W3C validator |