| Step | Hyp | Ref
| Expression |
| 1 | | mpt2bi123f.1 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
| 2 | | mpt2bi123f.2 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐵 |
| 3 | 1, 2 | nfeq 2776 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 = 𝐵 |
| 4 | | eleq2 2690 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 5 | 3, 4 | alrimi 2082 |
. . . . . 6
⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 6 | | mpt2bi123f.3 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐴 |
| 7 | 6 | nfcri 2758 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 8 | | mpt2bi123f.4 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐵 |
| 9 | 8 | nfcri 2758 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝐵 |
| 10 | 7, 9 | nfbi 1833 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 11 | | ax-5 1839 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 12 | 10, 11 | alrimi 2082 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 13 | 12 | alimi 1739 |
. . . . . 6
⊢
(∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 14 | 5, 13 | syl 17 |
. . . . 5
⊢ (𝐴 = 𝐵 → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 15 | | mpt2bi123f.5 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐶 |
| 16 | | mpt2bi123f.6 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐷 |
| 17 | 15, 16 | nfeq 2776 |
. . . . . . 7
⊢
Ⅎ𝑦 𝐶 = 𝐷 |
| 18 | | eleq2 2690 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 19 | 17, 18 | alrimi 2082 |
. . . . . 6
⊢ (𝐶 = 𝐷 → ∀𝑦(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 20 | | ax-5 1839 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 21 | 20 | alimi 1739 |
. . . . . 6
⊢
(∀𝑦(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 22 | | mpt2bi123f.7 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐶 |
| 23 | 22 | nfcri 2758 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐶 |
| 24 | | mpt2bi123f.8 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐷 |
| 25 | 24 | nfcri 2758 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐷 |
| 26 | 23, 25 | nfbi 1833 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
| 27 | 26 | nfal 2153 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
| 28 | 27 | nfal 2153 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) |
| 29 | 28 | nf5ri 2065 |
. . . . . 6
⊢
(∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 30 | 19, 21, 29 | 3syl 18 |
. . . . 5
⊢ (𝐶 = 𝐷 → ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 31 | | id 22 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 32 | 31 | alanimi 1744 |
. . . . . . 7
⊢
((∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 33 | 32 | alanimi 1744 |
. . . . . 6
⊢
((∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 34 | 33 | alanimi 1744 |
. . . . 5
⊢
((∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ ∀𝑥∀𝑦∀𝑧(𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) → ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 35 | 14, 30, 34 | syl2an 494 |
. . . 4
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷))) |
| 36 | | eqeq2 2633 |
. . . . . . 7
⊢ (𝐸 = 𝐹 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
| 37 | 36 | alrimiv 1855 |
. . . . . 6
⊢ (𝐸 = 𝐹 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
| 38 | 37 | 2ralimi 2953 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
| 39 | | hbra1 2942 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) |
| 40 | | rsp 2929 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → (𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 41 | 39, 40 | alrimih 1751 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦(𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 42 | | 19.21v 1868 |
. . . . . . . . 9
⊢
(∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ↔ (𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 43 | 42 | albii 1747 |
. . . . . . . 8
⊢
(∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ↔ ∀𝑦(𝑦 ∈ 𝐶 → ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 44 | 41, 43 | sylibr 224 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 45 | 44 | ralimi 2952 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 46 | | hbra1 2942 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → ∀𝑥∀𝑥 ∈ 𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 47 | | rsp 2929 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 48 | 46, 47 | alrimih 1751 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 49 | | 19.21v 1868 |
. . . . . . . 8
⊢
(∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ (𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 50 | 49 | 2albii 1748 |
. . . . . . 7
⊢
(∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ ∀𝑥∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 51 | 7 | 19.21 2075 |
. . . . . . . 8
⊢
(∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ (𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 52 | 51 | albii 1747 |
. . . . . . 7
⊢
(∀𝑥∀𝑦(𝑥 ∈ 𝐴 → ∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 53 | 50, 52 | sylbbr 226 |
. . . . . 6
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦∀𝑧(𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 54 | 45, 48, 53 | 3syl 18 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 ∀𝑧(𝑧 = 𝐸 ↔ 𝑧 = 𝐹) → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 55 | 38, 54 | syl 17 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹 → ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 56 | | id 22 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 57 | 56 | alanimi 1744 |
. . . . . 6
⊢
((∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 58 | 57 | alanimi 1744 |
. . . . 5
⊢
((∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 59 | 58 | alanimi 1744 |
. . . 4
⊢
((∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ ∀𝑥∀𝑦∀𝑧(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 60 | 35, 55, 59 | syl2an 494 |
. . 3
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 61 | | tsan2 33949 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐴 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 62 | 61 | ord 392 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 63 | | tsan2 33949 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 64 | 63 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
| 65 | 62, 64 | cnf1dd 33892 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 66 | | tsbi2 33941 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 67 | 66 | ord 392 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 68 | 67 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 69 | | ax-1 6 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 70 | 68, 69 | contrd 33899 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 71 | 70 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 72 | 65, 71 | cnf1dd 33892 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 73 | | idd 24 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴)) |
| 74 | | tsan2 33949 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
| 75 | 74 | ord 392 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
| 76 | | tsan2 33949 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 77 | 76 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
| 78 | 75, 77 | cnf1dd 33892 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 79 | | tsim2 33938 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 80 | 79 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 81 | 78, 80 | cnf1dd 33892 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 82 | | ax-1 6 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 83 | 81, 82 | contrd 33899 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 84 | 83 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 85 | | tsbi3 33942 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))) |
| 86 | 85 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵) ∨ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)))) |
| 87 | 84, 86 | cnfn2dd 33895 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵))) |
| 88 | 73, 87 | cnf1dd 33892 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 89 | | tsan2 33949 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 90 | 89 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)))) |
| 91 | 88, 90 | cnf1dd 33892 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 92 | | tsan2 33949 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 93 | 92 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 94 | 91, 93 | cnf1dd 33892 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ 𝑥 ∈ 𝐴 → ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 95 | 72, 94 | contrd 33899 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → 𝑥 ∈ 𝐴) |
| 96 | 95 | a1d 25 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑥 ∈ 𝐴)) |
| 97 | | ax-1 6 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 98 | 79 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 99 | 97, 98 | cnf2dd 33893 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 100 | | tsan3 33950 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 101 | 100 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
| 102 | 99, 101 | cnfn2dd 33895 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 103 | 96, 102 | mpdd 43 |
. . . . . . 7
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 104 | | notnotr 125 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) |
| 105 | 104 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 106 | 92 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 107 | 105, 106 | cnfn2dd 33895 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 108 | | tsan3 33950 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐷 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 109 | 108 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑦 ∈ 𝐷 ∨ ¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)))) |
| 110 | 107, 109 | cnfn2dd 33895 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑦 ∈ 𝐷)) |
| 111 | | tsan3 33950 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) ∨ ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
| 112 | 111 | ord 392 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)))) |
| 113 | 76 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
| 114 | 112, 113 | cnf1dd 33892 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 115 | 79 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 116 | 114, 115 | cnf1dd 33892 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 117 | | ax-1 6 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 118 | 116, 117 | contrd 33899 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 119 | 110, 118 | sylibrd 249 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑦 ∈ 𝐶)) |
| 120 | 95 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑥 ∈ 𝐴)) |
| 121 | | ax-1 6 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 122 | 79 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 123 | 121, 122 | cnf2dd 33893 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))))) |
| 124 | 100 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ ¬ (((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))))) |
| 125 | 123, 124 | cnfn2dd 33895 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 126 | 120, 125 | mpdd 43 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 127 | 119, 126 | mpdd 43 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 128 | 120, 119 | jcad 555 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 129 | | tsim3 33939 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 130 | 129 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 131 | 121, 130 | cnf2dd 33893 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 132 | | tsbi1 33940 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 133 | 132 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 134 | 131, 133 | cnf2dd 33893 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 135 | 105, 134 | cnfn2dd 33895 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 136 | | tsan1 33948 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 137 | 136 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
| 138 | 135, 137 | cnf2dd 33893 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ 𝑧 = 𝐸))) |
| 139 | 128, 138 | cnfn1dd 33894 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ 𝑧 = 𝐸)) |
| 140 | | tsan3 33950 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑧 = 𝐹 ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 141 | 140 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐹 ∨ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 142 | 105, 141 | cnfn2dd 33895 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → 𝑧 = 𝐹)) |
| 143 | | tsbi3 33942 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 144 | 143 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑧 = 𝐸 ∨ ¬ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 145 | 144 | or32dd 33896 |
. . . . . . . . . . . . . . 15
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ((𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ 𝑧 = 𝐹))) |
| 146 | 142, 145 | cnfn2dd 33895 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → (𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 147 | 139, 146 | cnf1dd 33892 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹) → ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 148 | 127, 147 | contrd 33899 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ¬ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) |
| 149 | 148 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 150 | 129 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬
(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))))) |
| 151 | 97, 150 | cnf2dd 33893 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬
(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 152 | 66 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) ∨ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))))) |
| 153 | 151, 152 | cnf2dd 33893 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 154 | 149, 153 | cnf2dd 33893 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 155 | 63 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
| 156 | 154, 155 | cnfn2dd 33895 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 157 | | tsan3 33950 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑦 ∈ 𝐶 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 158 | 157 | a1d 25 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑦 ∈ 𝐶 ∨ ¬ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)))) |
| 159 | 156, 158 | cnfn2dd 33895 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑦 ∈ 𝐶)) |
| 160 | | tsan3 33950 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (𝑧 = 𝐸 ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸))) |
| 161 | 160 | a1d 25 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑧 = 𝐸 ∨ ¬ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)))) |
| 162 | 154, 161 | cnfn2dd 33895 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑧 = 𝐸)) |
| 163 | 96, 83 | sylibd 229 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑥 ∈ 𝐵)) |
| 164 | 159, 118 | sylibd 229 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → 𝑦 ∈ 𝐷)) |
| 165 | 163, 164 | jcad 555 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
| 166 | | tsan1 33948 |
. . . . . . . . . . . . . 14
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 167 | 166 | a1d 25 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹) ∨ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)))) |
| 168 | 149, 167 | cnf2dd 33893 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∨ ¬ 𝑧 = 𝐹))) |
| 169 | 165, 168 | cnfn1dd 33894 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ 𝑧 = 𝐹)) |
| 170 | | tsbi4 33943 |
. . . . . . . . . . . . 13
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ 𝑧 = 𝐸 ∨ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 171 | 170 | a1d 25 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑧 = 𝐸 ∨ 𝑧 = 𝐹) ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 172 | 171 | or32dd 33896 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ 𝑧 = 𝐹))) |
| 173 | 169, 172 | cnf2dd 33893 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ 𝑧 = 𝐸 ∨ ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 174 | 162, 173 | cnfn1dd 33894 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) |
| 175 | | tsim1 33937 |
. . . . . . . . . . 11
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ((¬ 𝑦 ∈ 𝐶 ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 176 | 175 | a1d 25 |
. . . . . . . . . 10
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑦 ∈ 𝐶 ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)) ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 177 | 176 | or32dd 33896 |
. . . . . . . . 9
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ((¬
𝑦 ∈ 𝐶 ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))) ∨ (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 178 | 174, 177 | cnf2dd 33893 |
. . . . . . . 8
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → (¬ 𝑦 ∈ 𝐶 ∨ ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹))))) |
| 179 | 159, 178 | cnfn1dd 33894 |
. . . . . . 7
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → (¬ ⊥ → ¬ (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) |
| 180 | 103, 179 | contrd 33899 |
. . . . . 6
⊢ (¬
((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) → ⊥) |
| 181 | 180 | efald2 33877 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 182 | 181 | alimi 1739 |
. . . 4
⊢
(∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 183 | 182 | 2alimi 1740 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) ∧ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐶 → (𝑧 = 𝐸 ↔ 𝑧 = 𝐹)))) → ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹))) |
| 184 | | oprabbi 33970 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)}) |
| 185 | 60, 183, 184 | 3syl 18 |
. 2
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)}) |
| 186 | | df-mpt2 6655 |
. 2
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑧 = 𝐸)} |
| 187 | | df-mpt2 6655 |
. 2
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 = 𝐹)} |
| 188 | 185, 186,
187 | 3eqtr4g 2681 |
1
⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) |