| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jaoa | Structured version Visualization version Unicode version | ||
| Description: Inference disjoining and conjoining the antecedents of two implications. (Contributed by Stefan Allan, 1-Nov-2008.) |
| Ref | Expression |
|---|---|
| jaao.1 |
|
| jaao.2 |
|
| Ref | Expression |
|---|---|
| jaoa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaao.1 |
. . 3
| |
| 2 | 1 | adantrd 484 |
. 2
|
| 3 | jaao.2 |
. . 3
| |
| 4 | 3 | adantld 483 |
. 2
|
| 5 | 2, 4 | jaoi 394 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: pm4.79 607 19.40b 1815 abslt 14054 absle 14055 unconn 21232 dfon2lem4 31691 clsk1indlem3 38341 |
| Copyright terms: Public domain | W3C validator |