Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem3 Structured version   Visualization version   GIF version

Theorem clsk1indlem3 38341
Description: The ansatz closure function (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) has the K3 property of being sub-linear. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
Assertion
Ref Expression
clsk1indlem3 𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))
Distinct variable group:   𝑠,𝑟,𝑡
Allowed substitution hints:   𝐾(𝑡,𝑠,𝑟)

Proof of Theorem clsk1indlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elif 4128 . . . . . 6 (𝑥 ∈ if((𝑠𝑡) = {∅}, {∅, 1𝑜}, (𝑠𝑡)) ↔ (((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))))
2 uneq12 3762 . . . . . . . . . . 11 ((𝑠 = {∅} ∧ 𝑡 = {∅}) → (𝑠𝑡) = ({∅} ∪ {∅}))
3 unidm 3756 . . . . . . . . . . 11 ({∅} ∪ {∅}) = {∅}
42, 3syl6eq 2672 . . . . . . . . . 10 ((𝑠 = {∅} ∧ 𝑡 = {∅}) → (𝑠𝑡) = {∅})
5 an3 868 . . . . . . . . . . . . . 14 (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∧ ((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})) → (𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))
65orcd 407 . . . . . . . . . . . . 13 (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∧ ((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)))
76orcd 407 . . . . . . . . . . . 12 (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∧ ((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
87ex 450 . . . . . . . . . . 11 ((𝑠 = {∅} ∧ 𝑡 = {∅}) → (((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
9 pm2.24 121 . . . . . . . . . . . 12 ((𝑠𝑡) = {∅} → (¬ (𝑠𝑡) = {∅} → (𝑥 ∈ (𝑠𝑡) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
109impd 447 . . . . . . . . . . 11 ((𝑠𝑡) = {∅} → ((¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡)) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
118, 10jaao 531 . . . . . . . . . 10 (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∧ (𝑠𝑡) = {∅}) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
124, 11mpdan 702 . . . . . . . . 9 ((𝑠 = {∅} ∧ 𝑡 = {∅}) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
1312a1i 11 . . . . . . . 8 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → ((𝑠 = {∅} ∧ 𝑡 = {∅}) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
14 uneqsn 38321 . . . . . . . . . . . . 13 ((𝑠𝑡) = {∅} ↔ ((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (𝑠 = {∅} ∧ 𝑡 = ∅) ∨ (𝑠 = ∅ ∧ 𝑡 = {∅})))
15 df-3or 1038 . . . . . . . . . . . . 13 (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (𝑠 = {∅} ∧ 𝑡 = ∅) ∨ (𝑠 = ∅ ∧ 𝑡 = {∅})) ↔ (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (𝑠 = {∅} ∧ 𝑡 = ∅)) ∨ (𝑠 = ∅ ∧ 𝑡 = {∅})))
1614, 15bitri 264 . . . . . . . . . . . 12 ((𝑠𝑡) = {∅} ↔ (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (𝑠 = {∅} ∧ 𝑡 = ∅)) ∨ (𝑠 = ∅ ∧ 𝑡 = {∅})))
17 pm2.21 120 . . . . . . . . . . . . . . . 16 𝑠 = {∅} → (𝑠 = {∅} → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
1817adantrd 484 . . . . . . . . . . . . . . 15 𝑠 = {∅} → ((𝑠 = {∅} ∧ 𝑡 = {∅}) → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
1917adantrd 484 . . . . . . . . . . . . . . 15 𝑠 = {∅} → ((𝑠 = {∅} ∧ 𝑡 = ∅) → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
2018, 19jaod 395 . . . . . . . . . . . . . 14 𝑠 = {∅} → (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (𝑠 = {∅} ∧ 𝑡 = ∅)) → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
2120adantr 481 . . . . . . . . . . . . 13 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (𝑠 = {∅} ∧ 𝑡 = ∅)) → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
22 pm2.21 120 . . . . . . . . . . . . . . 15 𝑡 = {∅} → (𝑡 = {∅} → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
2322adantl 482 . . . . . . . . . . . . . 14 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → (𝑡 = {∅} → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
2423adantld 483 . . . . . . . . . . . . 13 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((𝑠 = ∅ ∧ 𝑡 = {∅}) → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
2521, 24jaod 395 . . . . . . . . . . . 12 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (𝑠 = {∅} ∧ 𝑡 = ∅)) ∨ (𝑠 = ∅ ∧ 𝑡 = {∅})) → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
2616, 25syl5bi 232 . . . . . . . . . . 11 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((𝑠𝑡) = {∅} → (𝑥 ∈ {∅, 1𝑜} → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
2726impd 447 . . . . . . . . . 10 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → (((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
28 elun 3753 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑠𝑡) ↔ (𝑥𝑠𝑥𝑡))
2928biimpi 206 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑠𝑡) → (𝑥𝑠𝑥𝑡))
3029adantl 482 . . . . . . . . . . . . . 14 ((¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡)) → (𝑥𝑠𝑥𝑡))
31 andi 911 . . . . . . . . . . . . . . 15 (((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ (𝑥𝑠𝑥𝑡)) ↔ (((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ 𝑥𝑠) ∨ ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ 𝑥𝑡)))
32 simpl 473 . . . . . . . . . . . . . . . . 17 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ¬ 𝑠 = {∅})
3332anim1i 592 . . . . . . . . . . . . . . . 16 (((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ 𝑥𝑠) → (¬ 𝑠 = {∅} ∧ 𝑥𝑠))
34 simpr 477 . . . . . . . . . . . . . . . . 17 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ¬ 𝑡 = {∅})
3534anim1i 592 . . . . . . . . . . . . . . . 16 (((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ 𝑥𝑡) → (¬ 𝑡 = {∅} ∧ 𝑥𝑡))
3633, 35orim12i 538 . . . . . . . . . . . . . . 15 ((((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ 𝑥𝑠) ∨ ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ 𝑥𝑡)) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))
3731, 36sylbi 207 . . . . . . . . . . . . . 14 (((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ (𝑥𝑠𝑥𝑡)) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))
3830, 37sylan2 491 . . . . . . . . . . . . 13 (((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))
3938olcd 408 . . . . . . . . . . . 12 (((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})) ∨ ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
40 or4 550 . . . . . . . . . . . 12 ((((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})) ∨ ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))) ↔ (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
4139, 40sylib 208 . . . . . . . . . . 11 (((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∧ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
4241ex 450 . . . . . . . . . 10 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡)) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
4327, 42jaod 395 . . . . . . . . 9 ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
4443a1i 11 . . . . . . . 8 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → ((¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
4513, 44jaod 395 . . . . . . 7 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅})) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
46 orc 400 . . . . . . . . . . . . . . 15 ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))
4746expcom 451 . . . . . . . . . . . . . 14 (𝑥 ∈ {∅, 1𝑜} → (𝑠 = {∅} → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
4847adantrd 484 . . . . . . . . . . . . 13 (𝑥 ∈ {∅, 1𝑜} → ((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
4948adantl 482 . . . . . . . . . . . 12 (((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) → ((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
50 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑠𝑠 = {∅}) → 𝑠 = {∅})
51 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = {∅} → 𝑠 = {∅})
52 snsspr1 4345 . . . . . . . . . . . . . . . . . . . . 21 {∅} ⊆ {∅, 1𝑜}
5351, 52syl6eqss 3655 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = {∅} → 𝑠 ⊆ {∅, 1𝑜})
5453sseld 3602 . . . . . . . . . . . . . . . . . . 19 (𝑠 = {∅} → (𝑥𝑠𝑥 ∈ {∅, 1𝑜}))
5554impcom 446 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑠𝑠 = {∅}) → 𝑥 ∈ {∅, 1𝑜})
5650, 55jca 554 . . . . . . . . . . . . . . . . 17 ((𝑥𝑠𝑠 = {∅}) → (𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))
5756orcd 407 . . . . . . . . . . . . . . . 16 ((𝑥𝑠𝑠 = {∅}) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))
5857ex 450 . . . . . . . . . . . . . . 15 (𝑥𝑠 → (𝑠 = {∅} → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
59 olc 399 . . . . . . . . . . . . . . . 16 ((¬ 𝑡 = {∅} ∧ 𝑥𝑡) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))
6059expcom 451 . . . . . . . . . . . . . . 15 (𝑥𝑡 → (¬ 𝑡 = {∅} → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
6158, 60jaoa 532 . . . . . . . . . . . . . 14 ((𝑥𝑠𝑥𝑡) → ((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
6228, 61sylbi 207 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑠𝑡) → ((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
6362adantl 482 . . . . . . . . . . . 12 ((¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡)) → ((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
6449, 63jaoi 394 . . . . . . . . . . 11 ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → ((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) → ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
65 olc 399 . . . . . . . . . . . . . . 15 ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})))
6665expcom 451 . . . . . . . . . . . . . 14 (𝑥 ∈ {∅, 1𝑜} → (𝑡 = {∅} → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))))
6766adantl 482 . . . . . . . . . . . . 13 (((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) → (𝑡 = {∅} → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))))
6867adantrd 484 . . . . . . . . . . . 12 (((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) → ((𝑡 = {∅} ∧ ¬ 𝑠 = {∅}) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))))
69 id 22 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) → (¬ 𝑠 = {∅} ∧ 𝑥𝑠))
7069ex 450 . . . . . . . . . . . . . . . . 17 𝑠 = {∅} → (𝑥𝑠 → (¬ 𝑠 = {∅} ∧ 𝑥𝑠)))
7170adantl 482 . . . . . . . . . . . . . . . 16 ((𝑡 = {∅} ∧ ¬ 𝑠 = {∅}) → (𝑥𝑠 → (¬ 𝑠 = {∅} ∧ 𝑥𝑠)))
72 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = {∅} → 𝑡 = {∅})
7372, 52syl6eqss 3655 . . . . . . . . . . . . . . . . . . 19 (𝑡 = {∅} → 𝑡 ⊆ {∅, 1𝑜})
7473sseld 3602 . . . . . . . . . . . . . . . . . 18 (𝑡 = {∅} → (𝑥𝑡𝑥 ∈ {∅, 1𝑜}))
7574anc2li 580 . . . . . . . . . . . . . . . . 17 (𝑡 = {∅} → (𝑥𝑡 → (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})))
7675adantr 481 . . . . . . . . . . . . . . . 16 ((𝑡 = {∅} ∧ ¬ 𝑠 = {∅}) → (𝑥𝑡 → (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})))
7771, 76orim12d 883 . . . . . . . . . . . . . . 15 ((𝑡 = {∅} ∧ ¬ 𝑠 = {∅}) → ((𝑥𝑠𝑥𝑡) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))))
7877com12 32 . . . . . . . . . . . . . 14 ((𝑥𝑠𝑥𝑡) → ((𝑡 = {∅} ∧ ¬ 𝑠 = {∅}) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))))
7928, 78sylbi 207 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑠𝑡) → ((𝑡 = {∅} ∧ ¬ 𝑠 = {∅}) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))))
8079adantl 482 . . . . . . . . . . . 12 ((¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡)) → ((𝑡 = {∅} ∧ ¬ 𝑠 = {∅}) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))))
8168, 80jaoi 394 . . . . . . . . . . 11 ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → ((𝑡 = {∅} ∧ ¬ 𝑠 = {∅}) → ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))))
8264, 81orim12d 883 . . . . . . . . . 10 ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∨ (𝑡 = {∅} ∧ ¬ 𝑠 = {∅})) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)) ∨ ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})))))
8382com12 32 . . . . . . . . 9 (((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∨ (𝑡 = {∅} ∧ ¬ 𝑠 = {∅})) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)) ∨ ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜})))))
84 or42 551 . . . . . . . . 9 ((((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)) ∨ ((¬ 𝑠 = {∅} ∧ 𝑥𝑠) ∨ (𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}))) ↔ (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
8583, 84syl6ib 241 . . . . . . . 8 (((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∨ (𝑡 = {∅} ∧ ¬ 𝑠 = {∅})) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
8685a1i 11 . . . . . . 7 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∨ (𝑡 = {∅} ∧ ¬ 𝑠 = {∅})) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))))
87 4exmid 997 . . . . . . . 8 (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅})) ∨ ((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∨ (𝑡 = {∅} ∧ ¬ 𝑠 = {∅})))
8887a1i 11 . . . . . . 7 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (((𝑠 = {∅} ∧ 𝑡 = {∅}) ∨ (¬ 𝑠 = {∅} ∧ ¬ 𝑡 = {∅})) ∨ ((𝑠 = {∅} ∧ ¬ 𝑡 = {∅}) ∨ (𝑡 = {∅} ∧ ¬ 𝑠 = {∅}))))
8945, 86, 88mpjaod 396 . . . . . 6 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → ((((𝑠𝑡) = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ (𝑠𝑡) = {∅} ∧ 𝑥 ∈ (𝑠𝑡))) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
901, 89syl5bi 232 . . . . 5 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (𝑥 ∈ if((𝑠𝑡) = {∅}, {∅, 1𝑜}, (𝑠𝑡)) → (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))))
91 elun 3753 . . . . . 6 (𝑥 ∈ (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∪ if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡)) ↔ (𝑥 ∈ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∨ 𝑥 ∈ if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡)))
92 elif 4128 . . . . . . 7 (𝑥 ∈ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ ((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)))
93 elif 4128 . . . . . . 7 (𝑥 ∈ if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡) ↔ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡)))
9492, 93orbi12i 543 . . . . . 6 ((𝑥 ∈ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∨ 𝑥 ∈ if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡)) ↔ (((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))))
9591, 94sylbbr 226 . . . . 5 ((((𝑠 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑥𝑠)) ∨ ((𝑡 = {∅} ∧ 𝑥 ∈ {∅, 1𝑜}) ∨ (¬ 𝑡 = {∅} ∧ 𝑥𝑡))) → 𝑥 ∈ (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∪ if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡)))
9690, 95syl6 35 . . . 4 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (𝑥 ∈ if((𝑠𝑡) = {∅}, {∅, 1𝑜}, (𝑠𝑡)) → 𝑥 ∈ (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∪ if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡))))
9796ssrdv 3609 . . 3 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → if((𝑠𝑡) = {∅}, {∅, 1𝑜}, (𝑠𝑡)) ⊆ (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∪ if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡)))
98 3on 7570 . . . . . 6 3𝑜 ∈ On
9998a1i 11 . . . . 5 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → 3𝑜 ∈ On)
100 elpwi 4168 . . . . . 6 (𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ 3𝑜)
101 elpwi 4168 . . . . . 6 (𝑡 ∈ 𝒫 3𝑜𝑡 ⊆ 3𝑜)
102 unss 3787 . . . . . . 7 ((𝑠 ⊆ 3𝑜𝑡 ⊆ 3𝑜) ↔ (𝑠𝑡) ⊆ 3𝑜)
103102biimpi 206 . . . . . 6 ((𝑠 ⊆ 3𝑜𝑡 ⊆ 3𝑜) → (𝑠𝑡) ⊆ 3𝑜)
104100, 101, 103syl2an 494 . . . . 5 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (𝑠𝑡) ⊆ 3𝑜)
10599, 104sselpwd 4807 . . . 4 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (𝑠𝑡) ∈ 𝒫 3𝑜)
106 eqeq1 2626 . . . . . 6 (𝑟 = (𝑠𝑡) → (𝑟 = {∅} ↔ (𝑠𝑡) = {∅}))
107 id 22 . . . . . 6 (𝑟 = (𝑠𝑡) → 𝑟 = (𝑠𝑡))
108106, 107ifbieq2d 4111 . . . . 5 (𝑟 = (𝑠𝑡) → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if((𝑠𝑡) = {∅}, {∅, 1𝑜}, (𝑠𝑡)))
109 clsk1indlem.k . . . . 5 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
110 prex 4909 . . . . . 6 {∅, 1𝑜} ∈ V
111 vex 3203 . . . . . . 7 𝑠 ∈ V
112 vex 3203 . . . . . . 7 𝑡 ∈ V
113111, 112unex 6956 . . . . . 6 (𝑠𝑡) ∈ V
114110, 113ifex 4156 . . . . 5 if((𝑠𝑡) = {∅}, {∅, 1𝑜}, (𝑠𝑡)) ∈ V
115108, 109, 114fvmpt 6282 . . . 4 ((𝑠𝑡) ∈ 𝒫 3𝑜 → (𝐾‘(𝑠𝑡)) = if((𝑠𝑡) = {∅}, {∅, 1𝑜}, (𝑠𝑡)))
116105, 115syl 17 . . 3 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (𝐾‘(𝑠𝑡)) = if((𝑠𝑡) = {∅}, {∅, 1𝑜}, (𝑠𝑡)))
117 eqeq1 2626 . . . . . . 7 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
118 id 22 . . . . . . 7 (𝑟 = 𝑠𝑟 = 𝑠)
119117, 118ifbieq2d 4111 . . . . . 6 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
120110, 111ifex 4156 . . . . . 6 if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ V
121119, 109, 120fvmpt 6282 . . . . 5 (𝑠 ∈ 𝒫 3𝑜 → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
122121adantr 481 . . . 4 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
123 eqeq1 2626 . . . . . . 7 (𝑟 = 𝑡 → (𝑟 = {∅} ↔ 𝑡 = {∅}))
124 id 22 . . . . . . 7 (𝑟 = 𝑡𝑟 = 𝑡)
125123, 124ifbieq2d 4111 . . . . . 6 (𝑟 = 𝑡 → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡))
126110, 112ifex 4156 . . . . . 6 if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡) ∈ V
127125, 109, 126fvmpt 6282 . . . . 5 (𝑡 ∈ 𝒫 3𝑜 → (𝐾𝑡) = if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡))
128127adantl 482 . . . 4 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (𝐾𝑡) = if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡))
129122, 128uneq12d 3768 . . 3 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → ((𝐾𝑠) ∪ (𝐾𝑡)) = (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∪ if(𝑡 = {∅}, {∅, 1𝑜}, 𝑡)))
13097, 116, 1293sstr4d 3648 . 2 ((𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜) → (𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡)))
131130rgen2a 2977 1 𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3o 1036   = wceq 1483  wcel 1990  wral 2912  cun 3572  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  {cpr 4179  cmpt 4729  Oncon0 5723  cfv 5888  1𝑜c1o 7553  3𝑜c3o 7555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-1o 7560  df-2o 7561  df-3o 7562
This theorem is referenced by:  clsk1independent  38344
  Copyright terms: Public domain W3C validator