![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbsextlem1 | Structured version Visualization version GIF version |
Description: Lemma for lbsext 19163. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lbsext.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsext.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbsext.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lbsext.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lbsext.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑉) |
lbsext.x | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) |
lbsext.s | ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} |
Ref | Expression |
---|---|
lbsextlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsext.c | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝑉) | |
2 | lbsext.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
3 | fvex 6201 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
4 | 2, 3 | eqeltri 2697 | . . . . 5 ⊢ 𝑉 ∈ V |
5 | 4 | elpw2 4828 | . . . 4 ⊢ (𝐶 ∈ 𝒫 𝑉 ↔ 𝐶 ⊆ 𝑉) |
6 | 1, 5 | sylibr 224 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝑉) |
7 | lbsext.x | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) | |
8 | ssid 3624 | . . . 4 ⊢ 𝐶 ⊆ 𝐶 | |
9 | 7, 8 | jctil 560 | . . 3 ⊢ (𝜑 → (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
10 | sseq2 3627 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ 𝐶)) | |
11 | difeq1 3721 | . . . . . . . . 9 ⊢ (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥})) | |
12 | 11 | fveq2d 6195 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥}))) |
13 | 12 | eleq2d 2687 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
14 | 13 | notbid 308 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
15 | 14 | raleqbi1dv 3146 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
16 | 10, 15 | anbi12d 747 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
17 | lbsext.s | . . . 4 ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} | |
18 | 16, 17 | elrab2 3366 | . . 3 ⊢ (𝐶 ∈ 𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
19 | 6, 9, 18 | sylanbrc 698 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
20 | ne0i 3921 | . 2 ⊢ (𝐶 ∈ 𝑆 → 𝑆 ≠ ∅) | |
21 | 19, 20 | syl 17 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 {crab 2916 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 {csn 4177 ‘cfv 5888 Basecbs 15857 LSpanclspn 18971 LBasisclbs 19074 LVecclvec 19102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
This theorem is referenced by: lbsextlem4 19161 |
Copyright terms: Public domain | W3C validator |