MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem4 Structured version   Visualization version   GIF version

Theorem lbsextlem4 19161
Description: Lemma for lbsext 19163. lbsextlem3 19160 satisfies the conditions for the application of Zorn's lemma zorn 9329 (thus invoking AC), and so there is a maximal linearly independent set extending 𝐶. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.k (𝜑 → 𝒫 𝑉 ∈ dom card)
Assertion
Ref Expression
lbsextlem4 (𝜑 → ∃𝑠𝐽 𝐶𝑠)
Distinct variable groups:   𝑥,𝐽   𝜑,𝑥,𝑠   𝑆,𝑠,𝑥   𝑥,𝑧,𝐶   𝑥,𝑁,𝑧   𝑥,𝑉,𝑧   𝑥,𝑊   𝑧,𝑠   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑠)   𝑆(𝑧)   𝐽(𝑧,𝑠)   𝑁(𝑠)   𝑉(𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem lbsextlem4
Dummy variables 𝑢 𝑤 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsext.k . . . 4 (𝜑 → 𝒫 𝑉 ∈ dom card)
2 lbsext.s . . . . 5 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
3 ssrab2 3687 . . . . 5 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ 𝒫 𝑉
42, 3eqsstri 3635 . . . 4 𝑆 ⊆ 𝒫 𝑉
5 ssnum 8862 . . . 4 ((𝒫 𝑉 ∈ dom card ∧ 𝑆 ⊆ 𝒫 𝑉) → 𝑆 ∈ dom card)
61, 4, 5sylancl 694 . . 3 (𝜑𝑆 ∈ dom card)
7 lbsext.v . . . 4 𝑉 = (Base‘𝑊)
8 lbsext.j . . . 4 𝐽 = (LBasis‘𝑊)
9 lbsext.n . . . 4 𝑁 = (LSpan‘𝑊)
10 lbsext.w . . . 4 (𝜑𝑊 ∈ LVec)
11 lbsext.c . . . 4 (𝜑𝐶𝑉)
12 lbsext.x . . . 4 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
137, 8, 9, 10, 11, 12, 2lbsextlem1 19158 . . 3 (𝜑𝑆 ≠ ∅)
1410adantr 481 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑊 ∈ LVec)
1511adantr 481 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝐶𝑉)
1612adantr 481 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
17 eqid 2622 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
18 simpr1 1067 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑆)
19 simpr2 1068 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦 ≠ ∅)
20 simpr3 1069 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → [] Or 𝑦)
21 eqid 2622 . . . . . 6 𝑢𝑦 (𝑁‘(𝑢 ∖ {𝑥})) = 𝑢𝑦 (𝑁‘(𝑢 ∖ {𝑥}))
227, 8, 9, 14, 15, 16, 2, 17, 18, 19, 20, 21lbsextlem3 19160 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦)) → 𝑦𝑆)
2322ex 450 . . . 4 (𝜑 → ((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆))
2423alrimiv 1855 . . 3 (𝜑 → ∀𝑦((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆))
25 zornn0g 9327 . . 3 ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅ ∧ ∀𝑦((𝑦𝑆𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑆)) → ∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡)
266, 13, 24, 25syl3anc 1326 . 2 (𝜑 → ∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡)
27 simprl 794 . . . . . . . . 9 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝑆)
28 sseq2 3627 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝐶𝑧𝐶𝑠))
29 difeq1 3721 . . . . . . . . . . . . . . 15 (𝑧 = 𝑠 → (𝑧 ∖ {𝑥}) = (𝑠 ∖ {𝑥}))
3029fveq2d 6195 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑥})))
3130eleq2d 2687 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3231notbid 308 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3332raleqbi1dv 3146 . . . . . . . . . . 11 (𝑧 = 𝑠 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
3428, 33anbi12d 747 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3534, 2elrab2 3366 . . . . . . . . 9 (𝑠𝑆 ↔ (𝑠 ∈ 𝒫 𝑉 ∧ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3627, 35sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠 ∈ 𝒫 𝑉 ∧ (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
3736simpld 475 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠 ∈ 𝒫 𝑉)
3837elpwid 4170 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝑉)
39 lveclmod 19106 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
4010, 39syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4140adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑊 ∈ LMod)
427, 9lspssv 18983 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → (𝑁𝑠) ⊆ 𝑉)
4341, 38, 42syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁𝑠) ⊆ 𝑉)
44 ssun1 3776 . . . . . . . . . . . 12 𝑠 ⊆ (𝑠 ∪ {𝑤})
4544a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊆ (𝑠 ∪ {𝑤}))
46 ssun2 3777 . . . . . . . . . . . . . 14 {𝑤} ⊆ (𝑠 ∪ {𝑤})
47 vsnid 4209 . . . . . . . . . . . . . 14 𝑤 ∈ {𝑤}
4846, 47sselii 3600 . . . . . . . . . . . . 13 𝑤 ∈ (𝑠 ∪ {𝑤})
497, 9lspssid 18985 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → 𝑠 ⊆ (𝑁𝑠))
5041, 38, 49syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠 ⊆ (𝑁𝑠))
5150adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊆ (𝑁𝑠))
52 eldifn 3733 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) → ¬ 𝑤 ∈ (𝑁𝑠))
5352adantl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤 ∈ (𝑁𝑠))
5451, 53ssneldd 3606 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤𝑠)
55 nelne1 2890 . . . . . . . . . . . . 13 ((𝑤 ∈ (𝑠 ∪ {𝑤}) ∧ ¬ 𝑤𝑠) → (𝑠 ∪ {𝑤}) ≠ 𝑠)
5648, 54, 55sylancr 695 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ≠ 𝑠)
5756necomd 2849 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ≠ (𝑠 ∪ {𝑤}))
58 df-pss 3590 . . . . . . . . . . 11 (𝑠 ⊊ (𝑠 ∪ {𝑤}) ↔ (𝑠 ⊆ (𝑠 ∪ {𝑤}) ∧ 𝑠 ≠ (𝑠 ∪ {𝑤})))
5945, 57, 58sylanbrc 698 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠 ⊊ (𝑠 ∪ {𝑤}))
6038adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑠𝑉)
61 eldifi 3732 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) → 𝑤𝑉)
6261adantl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝑤𝑉)
6362snssd 4340 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → {𝑤} ⊆ 𝑉)
6460, 63unssd 3789 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ⊆ 𝑉)
65 fvex 6201 . . . . . . . . . . . . . . 15 (Base‘𝑊) ∈ V
667, 65eqeltri 2697 . . . . . . . . . . . . . 14 𝑉 ∈ V
6766elpw2 4828 . . . . . . . . . . . . 13 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑉)
6864, 67sylibr 224 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉)
6936simprd 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝐶𝑠 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
7069simpld 475 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝐶𝑠)
7170adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝐶𝑠)
7271, 44syl6ss 3615 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → 𝐶 ⊆ (𝑠 ∪ {𝑤}))
7310ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑊 ∈ LVec)
7438adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑠𝑉)
7574ssdifssd 3748 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑠 ∖ {𝑥}) ⊆ 𝑉)
7662adantrr 753 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤𝑉)
77 simprrr 805 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
78 simprrl 804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥𝑠)
7954adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑤𝑠)
80 nelne2 2891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥𝑠 ∧ ¬ 𝑤𝑠) → 𝑥𝑤)
8178, 79, 80syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥𝑤)
82 nelsn 4212 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝑤 → ¬ 𝑥 ∈ {𝑤})
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑥 ∈ {𝑤})
84 disjsn 4246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (({𝑤} ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ {𝑤})
8583, 84sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ({𝑤} ∩ {𝑥}) = ∅)
86 disj3 4021 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (({𝑤} ∩ {𝑥}) = ∅ ↔ {𝑤} = ({𝑤} ∖ {𝑥}))
8785, 86sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → {𝑤} = ({𝑤} ∖ {𝑥}))
8887uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∖ {𝑥}) ∪ {𝑤}) = ((𝑠 ∖ {𝑥}) ∪ ({𝑤} ∖ {𝑥})))
89 difundir 3880 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∖ {𝑥}) ∪ ({𝑤} ∖ {𝑥}))
9088, 89syl6reqr 2675 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∖ {𝑥}) ∪ {𝑤}))
9190fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) = (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})))
9277, 91eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})))
9369simprd 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
9493adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
95 rsp 2929 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})) → (𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
9694, 78, 95sylc 65 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))
9792, 96eldifd 3585 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑥 ∈ ((𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})) ∖ (𝑁‘(𝑠 ∖ {𝑥}))))
987, 17, 9lspsolv 19143 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LVec ∧ ((𝑠 ∖ {𝑥}) ⊆ 𝑉𝑤𝑉𝑥 ∈ ((𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑤})) ∖ (𝑁‘(𝑠 ∖ {𝑥}))))) → 𝑤 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})))
9973, 75, 76, 97, 98syl13anc 1328 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤 ∈ (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})))
100 undif1 4043 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∖ {𝑥}) ∪ {𝑥}) = (𝑠 ∪ {𝑥})
10178snssd 4340 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → {𝑥} ⊆ 𝑠)
102 ssequn2 3786 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑥} ⊆ 𝑠 ↔ (𝑠 ∪ {𝑥}) = 𝑠)
103101, 102sylib 208 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑠 ∪ {𝑥}) = 𝑠)
104100, 103syl5eq 2668 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → ((𝑠 ∖ {𝑥}) ∪ {𝑥}) = 𝑠)
105104fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → (𝑁‘((𝑠 ∖ {𝑥}) ∪ {𝑥})) = (𝑁𝑠))
10699, 105eleqtrd 2703 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ (𝑤 ∈ (𝑉 ∖ (𝑁𝑠)) ∧ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))) → 𝑤 ∈ (𝑁𝑠))
107106expr 643 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ((𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) → 𝑤 ∈ (𝑁𝑠)))
10853, 107mtod 189 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
109 imnan 438 . . . . . . . . . . . . . . . 16 ((𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) ↔ ¬ (𝑥𝑠𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
110108, 109sylibr 224 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑥𝑠 → ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
111110ralrimiv 2965 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
112 difssd 3738 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠 ∖ {𝑤}) ⊆ 𝑠)
1137, 9lspss 18984 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑠𝑉 ∧ (𝑠 ∖ {𝑤}) ⊆ 𝑠) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
11441, 38, 112, 113syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
115114adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑁‘(𝑠 ∖ {𝑤})) ⊆ (𝑁𝑠))
116115, 53ssneldd 3606 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤})))
117 vex 3203 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
118 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤𝑥 = 𝑤)
119 sneq 4187 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → {𝑥} = {𝑤})
120119difeq2d 3728 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = ((𝑠 ∪ {𝑤}) ∖ {𝑤}))
121 difun2 4048 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∪ {𝑤}) ∖ {𝑤}) = (𝑠 ∖ {𝑤})
122120, 121syl6eq 2672 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → ((𝑠 ∪ {𝑤}) ∖ {𝑥}) = (𝑠 ∖ {𝑤}))
123122fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑤})))
124118, 123eleq12d 2695 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤}))))
125124notbid 308 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤}))))
126117, 125ralsn 4222 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ↔ ¬ 𝑤 ∈ (𝑁‘(𝑠 ∖ {𝑤})))
127116, 126sylibr 224 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
128 ralun 3795 . . . . . . . . . . . . . 14 ((∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})) ∧ ∀𝑥 ∈ {𝑤} ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))) → ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
129111, 127, 128syl2anc 693 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
13072, 129jca 554 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
131 sseq2 3627 . . . . . . . . . . . . . 14 (𝑧 = (𝑠 ∪ {𝑤}) → (𝐶𝑧𝐶 ⊆ (𝑠 ∪ {𝑤})))
132 difeq1 3721 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑧 ∖ {𝑥}) = ((𝑠 ∪ {𝑤}) ∖ {𝑥}))
133132fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))
134133eleq2d 2687 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑠 ∪ {𝑤}) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
135134notbid 308 . . . . . . . . . . . . . . 15 (𝑧 = (𝑠 ∪ {𝑤}) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
136135raleqbi1dv 3146 . . . . . . . . . . . . . 14 (𝑧 = (𝑠 ∪ {𝑤}) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥}))))
137131, 136anbi12d 747 . . . . . . . . . . . . 13 (𝑧 = (𝑠 ∪ {𝑤}) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))))
138137, 2elrab2 3366 . . . . . . . . . . . 12 ((𝑠 ∪ {𝑤}) ∈ 𝑆 ↔ ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑠 ∪ {𝑤}) ∧ ∀𝑥 ∈ (𝑠 ∪ {𝑤}) ¬ 𝑥 ∈ (𝑁‘((𝑠 ∪ {𝑤}) ∖ {𝑥})))))
13968, 130, 138sylanbrc 698 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → (𝑠 ∪ {𝑤}) ∈ 𝑆)
140 simplrr 801 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ∀𝑡𝑆 ¬ 𝑠𝑡)
141 psseq2 3695 . . . . . . . . . . . . 13 (𝑡 = (𝑠 ∪ {𝑤}) → (𝑠𝑡𝑠 ⊊ (𝑠 ∪ {𝑤})))
142141notbid 308 . . . . . . . . . . . 12 (𝑡 = (𝑠 ∪ {𝑤}) → (¬ 𝑠𝑡 ↔ ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤})))
143142rspcv 3305 . . . . . . . . . . 11 ((𝑠 ∪ {𝑤}) ∈ 𝑆 → (∀𝑡𝑆 ¬ 𝑠𝑡 → ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤})))
144139, 140, 143sylc 65 . . . . . . . . . 10 (((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) ∧ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠))) → ¬ 𝑠 ⊊ (𝑠 ∪ {𝑤}))
14559, 144pm2.65da 600 . . . . . . . . 9 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → ¬ 𝑤 ∈ (𝑉 ∖ (𝑁𝑠)))
146145eq0rdv 3979 . . . . . . . 8 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑉 ∖ (𝑁𝑠)) = ∅)
147 ssdif0 3942 . . . . . . . 8 (𝑉 ⊆ (𝑁𝑠) ↔ (𝑉 ∖ (𝑁𝑠)) = ∅)
148146, 147sylibr 224 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑉 ⊆ (𝑁𝑠))
14943, 148eqssd 3620 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑁𝑠) = 𝑉)
15010adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑊 ∈ LVec)
1517, 8, 9islbs2 19154 . . . . . . 7 (𝑊 ∈ LVec → (𝑠𝐽 ↔ (𝑠𝑉 ∧ (𝑁𝑠) = 𝑉 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
152150, 151syl 17 . . . . . 6 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠𝐽 ↔ (𝑠𝑉 ∧ (𝑁𝑠) = 𝑉 ∧ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥})))))
15338, 149, 93, 152mpbir3and 1245 . . . . 5 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → 𝑠𝐽)
154153, 70jca 554 . . . 4 ((𝜑 ∧ (𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡)) → (𝑠𝐽𝐶𝑠))
155154ex 450 . . 3 (𝜑 → ((𝑠𝑆 ∧ ∀𝑡𝑆 ¬ 𝑠𝑡) → (𝑠𝐽𝐶𝑠)))
156155reximdv2 3014 . 2 (𝜑 → (∃𝑠𝑆𝑡𝑆 ¬ 𝑠𝑡 → ∃𝑠𝐽 𝐶𝑠))
15726, 156mpd 15 1 (𝜑 → ∃𝑠𝐽 𝐶𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  wpss 3575  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436   ciun 4520   Or wor 5034  dom cdm 5114  cfv 5888   [] crpss 6936  cardccrd 8761  Basecbs 15857  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LBasisclbs 19074  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lbs 19075  df-lvec 19103
This theorem is referenced by:  lbsextg  19162
  Copyright terms: Public domain W3C validator