| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsextlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for lbsext 19163. The set |
| Ref | Expression |
|---|---|
| lbsext.v |
|
| lbsext.j |
|
| lbsext.n |
|
| lbsext.w |
|
| lbsext.c |
|
| lbsext.x |
|
| lbsext.s |
|
| Ref | Expression |
|---|---|
| lbsextlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsext.c |
. . . 4
| |
| 2 | lbsext.v |
. . . . . 6
| |
| 3 | fvex 6201 |
. . . . . 6
| |
| 4 | 2, 3 | eqeltri 2697 |
. . . . 5
|
| 5 | 4 | elpw2 4828 |
. . . 4
|
| 6 | 1, 5 | sylibr 224 |
. . 3
|
| 7 | lbsext.x |
. . . 4
| |
| 8 | ssid 3624 |
. . . 4
| |
| 9 | 7, 8 | jctil 560 |
. . 3
|
| 10 | sseq2 3627 |
. . . . 5
| |
| 11 | difeq1 3721 |
. . . . . . . . 9
| |
| 12 | 11 | fveq2d 6195 |
. . . . . . . 8
|
| 13 | 12 | eleq2d 2687 |
. . . . . . 7
|
| 14 | 13 | notbid 308 |
. . . . . 6
|
| 15 | 14 | raleqbi1dv 3146 |
. . . . 5
|
| 16 | 10, 15 | anbi12d 747 |
. . . 4
|
| 17 | lbsext.s |
. . . 4
| |
| 18 | 16, 17 | elrab2 3366 |
. . 3
|
| 19 | 6, 9, 18 | sylanbrc 698 |
. 2
|
| 20 | ne0i 3921 |
. 2
| |
| 21 | 19, 20 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: lbsextlem4 19161 |
| Copyright terms: Public domain | W3C validator |