HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopg Structured version   Visualization version   GIF version

Theorem leopg 28981
Description: Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopg ((𝑇𝐴𝑈𝐵) → (𝑇op 𝑈 ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝑥,𝑈

Proof of Theorem leopg
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4 (𝑡 = 𝑇 → (𝑢op 𝑡) = (𝑢op 𝑇))
21eleq1d 2686 . . 3 (𝑡 = 𝑇 → ((𝑢op 𝑡) ∈ HrmOp ↔ (𝑢op 𝑇) ∈ HrmOp))
31fveq1d 6193 . . . . . 6 (𝑡 = 𝑇 → ((𝑢op 𝑡)‘𝑥) = ((𝑢op 𝑇)‘𝑥))
43oveq1d 6665 . . . . 5 (𝑡 = 𝑇 → (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) = (((𝑢op 𝑇)‘𝑥) ·ih 𝑥))
54breq2d 4665 . . . 4 (𝑡 = 𝑇 → (0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)))
65ralbidv 2986 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)))
72, 6anbi12d 747 . 2 (𝑡 = 𝑇 → (((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥)) ↔ ((𝑢op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥))))
8 oveq1 6657 . . . 4 (𝑢 = 𝑈 → (𝑢op 𝑇) = (𝑈op 𝑇))
98eleq1d 2686 . . 3 (𝑢 = 𝑈 → ((𝑢op 𝑇) ∈ HrmOp ↔ (𝑈op 𝑇) ∈ HrmOp))
108fveq1d 6193 . . . . . 6 (𝑢 = 𝑈 → ((𝑢op 𝑇)‘𝑥) = ((𝑈op 𝑇)‘𝑥))
1110oveq1d 6665 . . . . 5 (𝑢 = 𝑈 → (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))
1211breq2d 4665 . . . 4 (𝑢 = 𝑈 → (0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
1312ralbidv 2986 . . 3 (𝑢 = 𝑈 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
149, 13anbi12d 747 . 2 (𝑢 = 𝑈 → (((𝑢op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)) ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
15 df-leop 28711 . 2 op = {⟨𝑡, 𝑢⟩ ∣ ((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥))}
167, 14, 15brabg 4994 1 ((𝑇𝐴𝑈𝐵) → (𝑇op 𝑈 ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936  cle 10075  chil 27776   ·ih csp 27779  op chod 27797  HrmOpcho 27807  op cleo 27815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-leop 28711
This theorem is referenced by:  leop  28982  leoprf2  28986
  Copyright terms: Public domain W3C validator