HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopg Structured version   Visualization version   Unicode version

Theorem leopg 28981
Description: Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopg  |-  ( ( T  e.  A  /\  U  e.  B )  ->  ( T  <_op  U  <->  ( ( U  -op  T
)  e.  HrmOp  /\  A. x  e.  ~H  0  <_  ( ( ( U  -op  T ) `  x )  .ih  x
) ) ) )
Distinct variable groups:    x, A    x, B    x, T    x, U

Proof of Theorem leopg
Dummy variables  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . 4  |-  ( t  =  T  ->  (
u  -op  t )  =  ( u  -op  T ) )
21eleq1d 2686 . . 3  |-  ( t  =  T  ->  (
( u  -op  t
)  e.  HrmOp  <->  ( u  -op  T )  e.  HrmOp ) )
31fveq1d 6193 . . . . . 6  |-  ( t  =  T  ->  (
( u  -op  t
) `  x )  =  ( ( u  -op  T ) `  x ) )
43oveq1d 6665 . . . . 5  |-  ( t  =  T  ->  (
( ( u  -op  t ) `  x
)  .ih  x )  =  ( ( ( u  -op  T ) `
 x )  .ih  x ) )
54breq2d 4665 . . . 4  |-  ( t  =  T  ->  (
0  <_  ( (
( u  -op  t
) `  x )  .ih  x )  <->  0  <_  ( ( ( u  -op  T ) `  x ) 
.ih  x ) ) )
65ralbidv 2986 . . 3  |-  ( t  =  T  ->  ( A. x  e.  ~H  0  <_  ( ( ( u  -op  t ) `
 x )  .ih  x )  <->  A. x  e.  ~H  0  <_  (
( ( u  -op  T ) `  x ) 
.ih  x ) ) )
72, 6anbi12d 747 . 2  |-  ( t  =  T  ->  (
( ( u  -op  t )  e.  HrmOp  /\ 
A. x  e.  ~H  0  <_  ( ( ( u  -op  t ) `
 x )  .ih  x ) )  <->  ( (
u  -op  T )  e.  HrmOp  /\  A. x  e.  ~H  0  <_  (
( ( u  -op  T ) `  x ) 
.ih  x ) ) ) )
8 oveq1 6657 . . . 4  |-  ( u  =  U  ->  (
u  -op  T )  =  ( U  -op  T ) )
98eleq1d 2686 . . 3  |-  ( u  =  U  ->  (
( u  -op  T
)  e.  HrmOp  <->  ( U  -op  T )  e.  HrmOp ) )
108fveq1d 6193 . . . . . 6  |-  ( u  =  U  ->  (
( u  -op  T
) `  x )  =  ( ( U  -op  T ) `  x ) )
1110oveq1d 6665 . . . . 5  |-  ( u  =  U  ->  (
( ( u  -op  T ) `  x ) 
.ih  x )  =  ( ( ( U  -op  T ) `  x )  .ih  x
) )
1211breq2d 4665 . . . 4  |-  ( u  =  U  ->  (
0  <_  ( (
( u  -op  T
) `  x )  .ih  x )  <->  0  <_  ( ( ( U  -op  T ) `  x ) 
.ih  x ) ) )
1312ralbidv 2986 . . 3  |-  ( u  =  U  ->  ( A. x  e.  ~H  0  <_  ( ( ( u  -op  T ) `
 x )  .ih  x )  <->  A. x  e.  ~H  0  <_  (
( ( U  -op  T ) `  x ) 
.ih  x ) ) )
149, 13anbi12d 747 . 2  |-  ( u  =  U  ->  (
( ( u  -op  T )  e.  HrmOp  /\  A. x  e.  ~H  0  <_  ( ( ( u  -op  T ) `  x )  .ih  x
) )  <->  ( ( U  -op  T )  e. 
HrmOp  /\  A. x  e. 
~H  0  <_  (
( ( U  -op  T ) `  x ) 
.ih  x ) ) ) )
15 df-leop 28711 . 2  |-  <_op  =  { <. t ,  u >.  |  ( ( u  -op  t )  e. 
HrmOp  /\  A. x  e. 
~H  0  <_  (
( ( u  -op  t ) `  x
)  .ih  x )
) }
167, 14, 15brabg 4994 1  |-  ( ( T  e.  A  /\  U  e.  B )  ->  ( T  <_op  U  <->  ( ( U  -op  T
)  e.  HrmOp  /\  A. x  e.  ~H  0  <_  ( ( ( U  -op  T ) `  x )  .ih  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936    <_ cle 10075   ~Hchil 27776    .ih csp 27779    -op chod 27797   HrmOpcho 27807    <_op cleo 27815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-leop 28711
This theorem is referenced by:  leop  28982  leoprf2  28986
  Copyright terms: Public domain W3C validator