Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolset Structured version   Visualization version   GIF version

Theorem lvolset 34858
Description: The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐵 = (Base‘𝐾)
lvolset.c 𝐶 = ( ⋖ ‘𝐾)
lvolset.p 𝑃 = (LPlanes‘𝐾)
lvolset.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolset (𝐾𝐴𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
Distinct variable groups:   𝑦,𝑃   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem lvolset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐾𝐴𝐾 ∈ V)
2 lvolset.v . . 3 𝑉 = (LVols‘𝐾)
3 fveq2 6191 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lvolset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2674 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6191 . . . . . . 7 (𝑘 = 𝐾 → (LPlanes‘𝑘) = (LPlanes‘𝐾))
7 lvolset.p . . . . . . 7 𝑃 = (LPlanes‘𝐾)
86, 7syl6eqr 2674 . . . . . 6 (𝑘 = 𝐾 → (LPlanes‘𝑘) = 𝑃)
9 fveq2 6191 . . . . . . . 8 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
10 lvolset.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
119, 10syl6eqr 2674 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
1211breqd 4664 . . . . . 6 (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥𝑦𝐶𝑥))
138, 12rexeqbidv 3153 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦𝑃 𝑦𝐶𝑥))
145, 13rabeqbidv 3195 . . . 4 (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
15 df-lvols 34786 . . . 4 LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥})
16 fvex 6201 . . . . . 6 (Base‘𝐾) ∈ V
174, 16eqeltri 2697 . . . . 5 𝐵 ∈ V
1817rabex 4813 . . . 4 {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥} ∈ V
1914, 15, 18fvmpt 6282 . . 3 (𝐾 ∈ V → (LVols‘𝐾) = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
202, 19syl5eq 2668 . 2 (𝐾 ∈ V → 𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
211, 20syl 17 1 (𝐾𝐴𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  Vcvv 3200   class class class wbr 4653  cfv 5888  Basecbs 15857  ccvr 34549  LPlanesclpl 34778  LVolsclvol 34779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lvols 34786
This theorem is referenced by:  islvol  34859
  Copyright terms: Public domain W3C validator