Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmplusgiopALT Structured version   Visualization version   GIF version

Theorem mgmplusgiopALT 41830
Description: Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
mgmplusgiopALT (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))

Proof of Theorem mgmplusgiopALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2622 . . . . 5 (+g𝑀) = (+g𝑀)
31, 2mgmcl 17245 . . . 4 ((𝑀 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
433expb 1266 . . 3 ((𝑀 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
54ralrimivva 2971 . 2 (𝑀 ∈ Mgm → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
6 fvex 6201 . . . 4 (+g𝑀) ∈ V
7 fvex 6201 . . . 4 (Base‘𝑀) ∈ V
86, 7pm3.2i 471 . . 3 ((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V)
9 iscllaw 41825 . . 3 (((+g𝑀) ∈ V ∧ (Base‘𝑀) ∈ V) → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
108, 9mp1i 13 . 2 (𝑀 ∈ Mgm → ((+g𝑀) clLaw (Base‘𝑀) ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
115, 10mpbird 247 1 (𝑀 ∈ Mgm → (+g𝑀) clLaw (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Mgmcmgm 17240   clLaw ccllaw 41819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-mgm 17242  df-cllaw 41822
This theorem is referenced by:  mgm2mgm  41863
  Copyright terms: Public domain W3C validator