![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgrpplusgaopALT | Structured version Visualization version GIF version |
Description: Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sgrpplusgaopALT | ⊢ (𝐺 ∈ SGrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) | |
2 | eqid 2622 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | eqid 2622 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 2, 3 | issgrp 17285 | . 2 ⊢ (𝐺 ∈ SGrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) |
5 | fvex 6201 | . . 3 ⊢ (+g‘𝐺) ∈ V | |
6 | fvex 6201 | . . 3 ⊢ (Base‘𝐺) ∈ V | |
7 | isasslaw 41828 | . . 3 ⊢ (((+g‘𝐺) ∈ V ∧ (Base‘𝐺) ∈ V) → ((+g‘𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)))) | |
8 | 5, 6, 7 | mp2an 708 | . 2 ⊢ ((+g‘𝐺) assLaw (Base‘𝐺) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
9 | 1, 4, 8 | 3imtr4i 281 | 1 ⊢ (𝐺 ∈ SGrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 Mgmcmgm 17240 SGrpcsgrp 17283 assLaw casslaw 41820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 df-sgrp 17284 df-asslaw 41824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |