MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2abid Structured version   Visualization version   GIF version

Theorem necon2abid 2836
Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2abid.1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Assertion
Ref Expression
necon2abid (𝜑 → (𝜓𝐴𝐵))

Proof of Theorem necon2abid
StepHypRef Expression
1 necon2abid.1 . . 3 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
21necon3abid 2830 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
3 notnotb 304 . 2 (𝜓 ↔ ¬ ¬ 𝜓)
42, 3syl6rbbr 279 1 (𝜑 → (𝜓𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1483  wne 2794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-ne 2795
This theorem is referenced by:  sossfld  5580  fin23lem24  9144  isf32lem4  9178  sqgt0sr  9927  leltne  10127  xrleltne  11978  xrltne  11994  ge0nemnf  12004  xlt2add  12090  supxrbnd  12158  supxrre2  12161  ioopnfsup  12663  icopnfsup  12664  xblpnfps  22200  xblpnf  22201  nmoreltpnf  27624  nmopreltpnf  28728  funeldmb  31661  elprneb  41296
  Copyright terms: Public domain W3C validator