![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sossfld | Structured version Visualization version GIF version |
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
sossfld | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4317 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | sotrieq 5062 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (𝑥 = 𝐵 ↔ ¬ (𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥))) | |
3 | 2 | necon2abid 2836 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
4 | 3 | anass1rs 849 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
5 | breldmg 5330 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝑥𝑅𝐵) → 𝑥 ∈ dom 𝑅) | |
6 | 5 | 3expia 1267 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
7 | 6 | ancoms 469 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
8 | brelrng 5355 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵𝑅𝑥) → 𝑥 ∈ ran 𝑅) | |
9 | 8 | 3expia 1267 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝑥 → 𝑥 ∈ ran 𝑅)) |
10 | 7, 9 | orim12d 883 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅))) |
11 | elun 3753 | . . . . . . 7 ⊢ (𝑥 ∈ (dom 𝑅 ∪ ran 𝑅) ↔ (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅)) | |
12 | 10, 11 | syl6ibr 242 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
13 | 12 | adantll 750 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
14 | 4, 13 | sylbird 250 | . . . 4 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ 𝐵 → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
15 | 14 | expimpd 629 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 1, 15 | syl5bi 232 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | 16 | ssrdv 3609 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 ∪ cun 3572 ⊆ wss 3574 {csn 4177 class class class wbr 4653 Or wor 5034 dom cdm 5114 ran crn 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-cnv 5122 df-dm 5124 df-rn 5125 |
This theorem is referenced by: sofld 5581 soex 7109 |
Copyright terms: Public domain | W3C validator |