MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlt2add Structured version   Visualization version   GIF version

Theorem xlt2add 12090
Description: Extended real version of lt2add 10513. Note that ltleadd 10511, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xlt2add (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))

Proof of Theorem xlt2add
StepHypRef Expression
1 xaddcl 12070 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
213ad2ant1 1082 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
32adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
4 simp1l 1085 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ∈ ℝ*)
5 simp2r 1088 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ∈ ℝ*)
6 xaddcl 12070 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
74, 5, 6syl2anc 693 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
87adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
9 xaddcl 12070 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1093ad2ant2 1083 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1110adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
12 simp3r 1090 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < 𝐷)
1312adantr 481 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 < 𝐷)
14 simp1r 1086 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ∈ ℝ*)
1514adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ*)
165adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ*)
17 simprl 794 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
18 xltadd2 12087 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐴 ∈ ℝ) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
1915, 16, 17, 18syl3anc 1326 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
2013, 19mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷))
21 simp3l 1089 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < 𝐶)
2221adantr 481 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 < 𝐶)
234adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ*)
24 simp2l 1087 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ∈ ℝ*)
2524adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ*)
26 simprr 796 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
27 xltadd1 12086 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2823, 25, 26, 27syl3anc 1326 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2922, 28mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷))
303, 8, 11, 20, 29xrlttrd 11990 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
3130anassrs 680 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
32 pnfxr 10092 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → +∞ ∈ ℝ*)
34 pnfge 11964 . . . . . . . . . . . 12 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
3524, 34syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≤ +∞)
364, 24, 33, 21, 35xrltletrd 11992 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < +∞)
37 nltpnft 11995 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
3837necon2abid 2836 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
394, 38syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
4036, 39mpbid 222 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ≠ +∞)
41 pnfge 11964 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
425, 41syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≤ +∞)
4314, 5, 33, 12, 42xrltletrd 11992 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < +∞)
44 nltpnft 11995 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
4544necon2abid 2836 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4614, 45syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4743, 46mpbid 222 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ≠ +∞)
48 xaddnepnf 12068 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
494, 40, 14, 47, 48syl22anc 1327 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ≠ +∞)
50 nltpnft 11995 . . . . . . . . . 10 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) = +∞ ↔ ¬ (𝐴 +𝑒 𝐵) < +∞))
5150necon2abid 2836 . . . . . . . . 9 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
522, 51syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
5349, 52mpbird 247 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < +∞)
5453adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < +∞)
55 oveq2 6658 . . . . . . 7 (𝐷 = +∞ → (𝐶 +𝑒 𝐷) = (𝐶 +𝑒 +∞))
56 mnfxr 10096 . . . . . . . . . . 11 -∞ ∈ ℝ*
5756a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ∈ ℝ*)
58 mnfle 11969 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
594, 58syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐴)
6057, 4, 24, 59, 21xrlelttrd 11991 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐶)
61 ngtmnft 11997 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐶 = -∞ ↔ ¬ -∞ < 𝐶))
6261necon2abid 2836 . . . . . . . . . 10 (𝐶 ∈ ℝ* → (-∞ < 𝐶𝐶 ≠ -∞))
6324, 62syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐶𝐶 ≠ -∞))
6460, 63mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≠ -∞)
65 xaddpnf1 12057 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
6624, 64, 65syl2anc 693 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 +∞) = +∞)
6755, 66sylan9eqr 2678 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐶 +𝑒 𝐷) = +∞)
6854, 67breqtrrd 4681 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
6968adantlr 751 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
70 mnfle 11969 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
7114, 70syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐵)
7257, 14, 5, 71, 12xrlelttrd 11991 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐷)
73 ngtmnft 11997 . . . . . . . . . . 11 (𝐷 ∈ ℝ* → (𝐷 = -∞ ↔ ¬ -∞ < 𝐷))
7473necon2abid 2836 . . . . . . . . . 10 (𝐷 ∈ ℝ* → (-∞ < 𝐷𝐷 ≠ -∞))
755, 74syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐷𝐷 ≠ -∞))
7672, 75mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≠ -∞)
7776a1d 25 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (¬ (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷) → 𝐷 ≠ -∞))
7877necon4bd 2814 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 = -∞ → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
7978imp 445 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
8079adantlr 751 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
81 elxr 11950 . . . . . 6 (𝐷 ∈ ℝ* ↔ (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
825, 81sylib 208 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
8382adantr 481 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
8431, 69, 80, 83mpjao3dan 1395 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
8540a1d 25 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (¬ (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷) → 𝐴 ≠ +∞))
8685necon4bd 2814 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 = +∞ → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
8786imp 445 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
88 oveq1 6657 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
89 xaddmnf2 12060 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
9014, 47, 89syl2anc 693 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ +𝑒 𝐵) = -∞)
9188, 90sylan9eqr 2678 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
92 xaddnemnf 12067 . . . . . . 7 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
9324, 64, 5, 76, 92syl22anc 1327 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ≠ -∞)
94 ngtmnft 11997 . . . . . . . 8 ((𝐶 +𝑒 𝐷) ∈ ℝ* → ((𝐶 +𝑒 𝐷) = -∞ ↔ ¬ -∞ < (𝐶 +𝑒 𝐷)))
9594necon2abid 2836 . . . . . . 7 ((𝐶 +𝑒 𝐷) ∈ ℝ* → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9610, 95syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9793, 96mpbird 247 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < (𝐶 +𝑒 𝐷))
9897adantr 481 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → -∞ < (𝐶 +𝑒 𝐷))
9991, 98eqbrtrd 4675 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
100 elxr 11950 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1014, 100sylib 208 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
10284, 87, 99, 101mpjao3dan 1395 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
1031023expia 1267 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  (class class class)co 6650  cr 9935  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075   +𝑒 cxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946  df-xadd 11947
This theorem is referenced by:  bldisj  22203  iscau3  23076  xrofsup  29533  xrge0addgt0  29691
  Copyright terms: Public domain W3C validator