| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq12d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| neleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| neleq12d | ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleq12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | neleq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | eleq12d 2695 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| 4 | 3 | notbid 308 | . 2 ⊢ (𝜑 → (¬ 𝐴 ∈ 𝐶 ↔ ¬ 𝐵 ∈ 𝐷)) |
| 5 | df-nel 2898 | . 2 ⊢ (𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶) | |
| 6 | df-nel 2898 | . 2 ⊢ (𝐵 ∉ 𝐷 ↔ ¬ 𝐵 ∈ 𝐷) | |
| 7 | 4, 5, 6 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∉ wnel 2897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-nel 2898 |
| This theorem is referenced by: neleq1 2902 neleq2 2903 uhgrspan1 26195 nbgrnself 26257 nbgrnself2 26259 finsumvtxdg2size 26446 |
| Copyright terms: Public domain | W3C validator |