![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 2898. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 2898 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 221 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 1990 ∉ wnel 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-nel 2898 |
This theorem is referenced by: ru 3434 prneli 4202 snnexOLD 6967 ruv 8507 ruALT 8508 cardprc 8806 pnfnre 10081 mnfnre 10082 wrdlndm 13321 eirr 14933 sqrt2irr 14979 lcmfnnval 15337 lcmf0 15347 zringndrg 19838 topnex 20800 zfbas 21700 aaliou3 24106 finsumvtxdg2sstep 26445 clwwlksn0 26907 xrge0iifcnv 29979 bj-0nel1 32940 bj-1nel0 32941 bj-0nelsngl 32959 fmtnoinf 41448 fmtno5nprm 41495 0nodd 41810 2nodd 41812 1neven 41932 2zrngnring 41952 |
Copyright terms: Public domain | W3C validator |