| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq12d | Structured version Visualization version Unicode version | ||
| Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq12d.1 |
|
| neleq12d.2 |
|
| Ref | Expression |
|---|---|
| neleq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleq12d.1 |
. . . 4
| |
| 2 | neleq12d.2 |
. . . 4
| |
| 3 | 1, 2 | eleq12d 2695 |
. . 3
|
| 4 | 3 | notbid 308 |
. 2
|
| 5 | df-nel 2898 |
. 2
| |
| 6 | df-nel 2898 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-nel 2898 |
| This theorem is referenced by: neleq1 2902 neleq2 2903 uhgrspan1 26195 nbgrnself 26257 nbgrnself2 26259 finsumvtxdg2size 26446 |
| Copyright terms: Public domain | W3C validator |