MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1 Structured version   Visualization version   GIF version

Theorem uhgrspan1 26195
Description: The induced subgraph 𝑆 of a hypergraph 𝐺 obtained by removing one vertex is actually a subgraph of 𝐺. A subgraph is called induced or spanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → 𝑆 SubGraph 𝐺)
Distinct variable groups:   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem uhgrspan1
Dummy variables 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 3738 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑉 ∖ {𝑁}) ⊆ 𝑉)
2 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
3 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
4 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
5 uhgrspan1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
62, 3, 4, 5uhgrspan1lem3 26194 . . 3 (iEdg‘𝑆) = (𝐼𝐹)
7 resresdm 5626 . . 3 ((iEdg‘𝑆) = (𝐼𝐹) → (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)))
86, 7mp1i 13 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)))
93uhgrfun 25961 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
10 fvelima 6248 . . . . . . 7 ((Fun 𝐼𝑐 ∈ (𝐼𝐹)) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐)
1110ex 450 . . . . . 6 (Fun 𝐼 → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
129, 11syl 17 . . . . 5 (𝐺 ∈ UHGraph → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
1312adantr 481 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
14 eqidd 2623 . . . . . . . 8 (𝑖 = 𝑗𝑁 = 𝑁)
15 fveq2 6191 . . . . . . . 8 (𝑖 = 𝑗 → (𝐼𝑖) = (𝐼𝑗))
1614, 15neleq12d 2901 . . . . . . 7 (𝑖 = 𝑗 → (𝑁 ∉ (𝐼𝑖) ↔ 𝑁 ∉ (𝐼𝑗)))
1716, 4elrab2 3366 . . . . . 6 (𝑗𝐹 ↔ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗)))
18 fvexd 6203 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ∈ V)
192, 3uhgrss 25959 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom 𝐼) → (𝐼𝑗) ⊆ 𝑉)
2019ad2ant2r 783 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ⊆ 𝑉)
21 simprr 796 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → 𝑁 ∉ (𝐼𝑗))
22 elpwdifsn 4319 . . . . . . . . 9 (((𝐼𝑗) ∈ V ∧ (𝐼𝑗) ⊆ 𝑉𝑁 ∉ (𝐼𝑗)) → (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2318, 20, 21, 22syl3anc 1326 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
24 eleq1 2689 . . . . . . . . 9 (𝑐 = (𝐼𝑗) → (𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}) ↔ (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2524eqcoms 2630 . . . . . . . 8 ((𝐼𝑗) = 𝑐 → (𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}) ↔ (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2623, 25syl5ibrcom 237 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2726ex 450 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗)) → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}))))
2817, 27syl5bi 232 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑗𝐹 → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}))))
2928rexlimdv 3030 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (∃𝑗𝐹 (𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
3013, 29syld 47 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑐 ∈ (𝐼𝐹) → 𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
3130ssrdv 3609 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))
32 opex 4932 . . . . 5 ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩ ∈ V
335, 32eqeltri 2697 . . . 4 𝑆 ∈ V
3433a1i 11 . . 3 (𝑁𝑉𝑆 ∈ V)
352, 3, 4, 5uhgrspan1lem2 26193 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3635eqcomi 2631 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
37 eqid 2622 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
386rneqi 5352 . . . . 5 ran (iEdg‘𝑆) = ran (𝐼𝐹)
39 edgval 25941 . . . . 5 (Edg‘𝑆) = ran (iEdg‘𝑆)
40 df-ima 5127 . . . . 5 (𝐼𝐹) = ran (𝐼𝐹)
4138, 39, 403eqtr4ri 2655 . . . 4 (𝐼𝐹) = (Edg‘𝑆)
4236, 2, 37, 3, 41issubgr 26163 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ ((𝑉 ∖ {𝑁}) ⊆ 𝑉 ∧ (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)) ∧ (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))))
4334, 42sylan2 491 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑆 SubGraph 𝐺 ↔ ((𝑉 ∖ {𝑁}) ⊆ 𝑉 ∧ (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)) ∧ (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))))
441, 8, 31, 43mpbir3and 1245 1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wnel 2897  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  𝒫 cpw 4158  {csn 4177  cop 4183   class class class wbr 4653  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Fun wfun 5882  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-subgr 26160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator