![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelneq2 | Structured version Visualization version GIF version |
Description: A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
nelneq2 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2690 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpcd 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = 𝐶 → 𝐴 ∈ 𝐶)) |
3 | 2 | con3dimp 457 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 |
This theorem is referenced by: ssnelpss 3718 opthwiener 4976 ssfin4 9132 pwxpndom2 9487 fzneuz 12421 hauspwpwf1 21791 topdifinffinlem 33195 clsk1indlem1 38343 |
Copyright terms: Public domain | W3C validator |