MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom2 Structured version   Visualization version   GIF version

Theorem pwxpndom2 9487
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwxpndom2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))

Proof of Theorem pwxpndom2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseq 9486 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛))
2 reldom 7961 . . . . . . 7 Rel ≼
32brrelex2i 5159 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
4 oveq1 6657 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑚 1𝑜) = (𝐴𝑚 1𝑜))
5 id 22 . . . . . . . 8 (𝑥 = 𝐴𝑥 = 𝐴)
64, 5breq12d 4666 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑚 1𝑜) ≈ 𝑥 ↔ (𝐴𝑚 1𝑜) ≈ 𝐴))
7 df1o2 7572 . . . . . . . . 9 1𝑜 = {∅}
87oveq2i 6661 . . . . . . . 8 (𝑥𝑚 1𝑜) = (𝑥𝑚 {∅})
9 vex 3203 . . . . . . . . 9 𝑥 ∈ V
10 0ex 4790 . . . . . . . . 9 ∅ ∈ V
119, 10mapsnen 8035 . . . . . . . 8 (𝑥𝑚 {∅}) ≈ 𝑥
128, 11eqbrtri 4674 . . . . . . 7 (𝑥𝑚 1𝑜) ≈ 𝑥
136, 12vtoclg 3266 . . . . . 6 (𝐴 ∈ V → (𝐴𝑚 1𝑜) ≈ 𝐴)
14 ensym 8005 . . . . . 6 ((𝐴𝑚 1𝑜) ≈ 𝐴𝐴 ≈ (𝐴𝑚 1𝑜))
153, 13, 143syl 18 . . . . 5 (ω ≼ 𝐴𝐴 ≈ (𝐴𝑚 1𝑜))
16 map2xp 8130 . . . . . 6 (𝐴 ∈ V → (𝐴𝑚 2𝑜) ≈ (𝐴 × 𝐴))
17 ensym 8005 . . . . . 6 ((𝐴𝑚 2𝑜) ≈ (𝐴 × 𝐴) → (𝐴 × 𝐴) ≈ (𝐴𝑚 2𝑜))
183, 16, 173syl 18 . . . . 5 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ (𝐴𝑚 2𝑜))
19 elmapi 7879 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝑚 1𝑜) → 𝑥:1𝑜𝐴)
20 fdm 6051 . . . . . . . . . . 11 (𝑥:1𝑜𝐴 → dom 𝑥 = 1𝑜)
2119, 20syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝑚 1𝑜) → dom 𝑥 = 1𝑜)
2221adantr 481 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)) → dom 𝑥 = 1𝑜)
23 1onn 7719 . . . . . . . . . . . . . 14 1𝑜 ∈ ω
2423elexi 3213 . . . . . . . . . . . . 13 1𝑜 ∈ V
2524sucid 5804 . . . . . . . . . . . 12 1𝑜 ∈ suc 1𝑜
26 df-2o 7561 . . . . . . . . . . . 12 2𝑜 = suc 1𝑜
2725, 26eleqtrri 2700 . . . . . . . . . . 11 1𝑜 ∈ 2𝑜
28 1on 7567 . . . . . . . . . . . 12 1𝑜 ∈ On
2928onirri 5834 . . . . . . . . . . 11 ¬ 1𝑜 ∈ 1𝑜
30 nelneq2 2726 . . . . . . . . . . 11 ((1𝑜 ∈ 2𝑜 ∧ ¬ 1𝑜 ∈ 1𝑜) → ¬ 2𝑜 = 1𝑜)
3127, 29, 30mp2an 708 . . . . . . . . . 10 ¬ 2𝑜 = 1𝑜
32 elmapi 7879 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝑚 2𝑜) → 𝑥:2𝑜𝐴)
33 fdm 6051 . . . . . . . . . . . . 13 (𝑥:2𝑜𝐴 → dom 𝑥 = 2𝑜)
3432, 33syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝑚 2𝑜) → dom 𝑥 = 2𝑜)
3534adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)) → dom 𝑥 = 2𝑜)
3635eqeq1d 2624 . . . . . . . . . 10 ((𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)) → (dom 𝑥 = 1𝑜 ↔ 2𝑜 = 1𝑜))
3731, 36mtbiri 317 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)) → ¬ dom 𝑥 = 1𝑜)
3822, 37pm2.65i 185 . . . . . . . 8 ¬ (𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜))
39 elin 3796 . . . . . . . 8 (𝑥 ∈ ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜)) ↔ (𝑥 ∈ (𝐴𝑚 1𝑜) ∧ 𝑥 ∈ (𝐴𝑚 2𝑜)))
4038, 39mtbir 313 . . . . . . 7 ¬ 𝑥 ∈ ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜))
4140a1i 11 . . . . . 6 (ω ≼ 𝐴 → ¬ 𝑥 ∈ ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜)))
4241eq0rdv 3979 . . . . 5 (ω ≼ 𝐴 → ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜)) = ∅)
43 cdaenun 8996 . . . . 5 ((𝐴 ≈ (𝐴𝑚 1𝑜) ∧ (𝐴 × 𝐴) ≈ (𝐴𝑚 2𝑜) ∧ ((𝐴𝑚 1𝑜) ∩ (𝐴𝑚 2𝑜)) = ∅) → (𝐴 +𝑐 (𝐴 × 𝐴)) ≈ ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)))
4415, 18, 42, 43syl3anc 1326 . . . 4 (ω ≼ 𝐴 → (𝐴 +𝑐 (𝐴 × 𝐴)) ≈ ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)))
45 omex 8540 . . . . . 6 ω ∈ V
46 ovex 6678 . . . . . 6 (𝐴𝑚 𝑛) ∈ V
4745, 46iunex 7147 . . . . 5 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ V
48 oveq2 6658 . . . . . . . 8 (𝑛 = 1𝑜 → (𝐴𝑚 𝑛) = (𝐴𝑚 1𝑜))
4948ssiun2s 4564 . . . . . . 7 (1𝑜 ∈ ω → (𝐴𝑚 1𝑜) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛))
5023, 49ax-mp 5 . . . . . 6 (𝐴𝑚 1𝑜) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛)
51 2onn 7720 . . . . . . 7 2𝑜 ∈ ω
52 oveq2 6658 . . . . . . . 8 (𝑛 = 2𝑜 → (𝐴𝑚 𝑛) = (𝐴𝑚 2𝑜))
5352ssiun2s 4564 . . . . . . 7 (2𝑜 ∈ ω → (𝐴𝑚 2𝑜) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛))
5451, 53ax-mp 5 . . . . . 6 (𝐴𝑚 2𝑜) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛)
5550, 54unssi 3788 . . . . 5 ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛)
56 ssdomg 8001 . . . . 5 ( 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ V → (((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ⊆ 𝑛 ∈ ω (𝐴𝑚 𝑛) → ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)))
5747, 55, 56mp2 9 . . . 4 ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)
58 endomtr 8014 . . . 4 (((𝐴 +𝑐 (𝐴 × 𝐴)) ≈ ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ∧ ((𝐴𝑚 1𝑜) ∪ (𝐴𝑚 2𝑜)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)) → (𝐴 +𝑐 (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛))
5944, 57, 58sylancl 694 . . 3 (ω ≼ 𝐴 → (𝐴 +𝑐 (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛))
60 domtr 8009 . . . 4 ((𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)) ∧ (𝐴 +𝑐 (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛))
6160expcom 451 . . 3 ((𝐴 +𝑐 (𝐴 × 𝐴)) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛) → (𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛)))
6259, 61syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)) → 𝒫 𝐴 𝑛 ∈ ω (𝐴𝑚 𝑛)))
631, 62mtod 189 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 +𝑐 (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   ciun 4520   class class class wbr 4653   × cxp 5112  dom cdm 5114  suc csuc 5725  wf 5884  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554  𝑚 cmap 7857  cen 7952  cdom 7953   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-har 8463  df-cnf 8559  df-card 8765  df-cda 8990
This theorem is referenced by:  pwxpndom  9488  pwcdandom  9489
  Copyright terms: Public domain W3C validator